Share:
Share this content in WeChat
X
Review
Research progress on resting-state functional magnetic resonance imaging in post-stroke depression
QIAN Jinhua  CHI Qinjie  DING Wenbin  WANG Tianle  ZHU Li 

Cite this article as: QIAN J H, CHI Q J, DING W B, et al. Research progress on resting-state functional magnetic resonance imaging in post-stroke depression[J]. Chin J Magn Reson Imaging, 2025, 16(9): 181-187. DOI:10.12015/issn.1674-8034.2025.09.027.


[Abstract] Post-stroke depression (PSD) is a common neuropsychiatric complication following stroke, significantly affecting patients' functional recovery, mental and physical health, and long-term prognosis. In recent years, resting-state functional magnetic resonance imaging (rs-fMRI), a noninvasive and repeatable brain imaging technique, has been increasingly utilized to reveal spontaneous neural activity and functional connectivity patterns. This approach provides important neuroimaging evidence for understanding the underlying neural mechanisms of PSD and holds potential for early diagnosis and prognosis prediction. This review systematically summarizes the major findings, emerging analytical methods, and clinical implications of rs-fMRI in PSD research. It also discusses the limitations of existing studies and proposes future research directions, aiming to provide new insights in the mechanistic study and clinical management of PSD.
[Keywords] stroke;post-stroke depression;resting-state;functional magnetic resonance imaging;magnetic resonance imaging

QIAN Jinhua1, 2   CHI Qinjie1   DING Wenbin1   WANG Tianle2   ZHU Li2*  

1 Department of Interventional Radiology, the Second Affiliated Hospital of Nantong University, Nantong 226600, China

2 Department of Radiology, the Second Affiliated Hospital of Nantong University, Nantong 226600, China

Corresponding author: ZHU L, E-mail: 9364923@qq.com

Conflicts of interest   None.

Received  2025-06-09
Accepted  2025-09-03
DOI: 10.12015/issn.1674-8034.2025.09.027
Cite this article as: QIAN J H, CHI Q J, DING W B, et al. Research progress on resting-state functional magnetic resonance imaging in post-stroke depression[J]. Chin J Magn Reson Imaging, 2025, 16(9): 181-187. DOI:10.12015/issn.1674-8034.2025.09.027.

[1]
HU S, GAO M, HE Y, et al. Comparison of the performance of different nutritional indicators for predicting poststroke depression in older adults with ischemic stroke[J]. Int J Nurs Sci, 2024, 11(3): 349-356. DOI: 10.1016/j.ijnss.2024.06.006.
[2]
ELSER H, CAUNCA M, REHKOPF D H, et al. Trends and inequities in the diagnosis and treatment of poststroke depression: a retrospective cohort study of privately insured patients in the USA, 2003-2020[J]. J Neurol Neurosurg Psychiatry, 2023, 94(3): 220-226. DOI: 10.1136/jnnp-2022-330179.
[3]
MASUCCIO F G, GRANGE E, DI GIOVANNI R, et al. Post-Stroke Depression in Older Adults: An Overview[J]. Drugs Aging, 2024, 41(4): 303-318. DOI: 10.1007/s40266-024-01104-1.
[4]
ZHU R R, ZHANG P, YAN H Q, et al. Resting-state regional brain activity and altered default mode network functional connectivity in patients with post-stroke depression: a magnetic resonance imaging study[J]. Chin J Stroke, 2020, 15(4): 382-388. DOI: 10.3969/j.issn.1673-5765.2020.04.010.
[5]
GUO J, WANG J, SUN W, et al. The advances of post-stroke depression: 2021 update[J]. J Neurol, 2022, 269(3): 1236-1249. DOI: 10.1007/s00415-021-10597-4.
[6]
LIU J, XU L, LI X Q, et al. Trajectories and Interactions of Dyadic Coping and Depression in Patients After Thrombolysis for Acute Ischemic stroke: A Longitudinal Study in China[J]. Psychol Res Behav Manag, 2025, 18: 1269-1277. DOI: 10.2147/PRBM.S525398.
[7]
LIU L, MARSHALL I J, LI X, et al. Long-term outcomes of depression up to 10-years after stroke in the South London Stroke Register: a population-based study[J/OL]. Lancet Reg Health Eur, 2025, 54: 101324 [2025-06-09]. https://doi.org/10.1016/j.lanepe.2025.101324. DOI: 10.1016/j.lanepe.2025.101324.
[8]
RAIMONDO L, ĹAF O, HEIJ J, et al. Advances in resting state fMRI acquisitions for functional connectomics[J/OL]. Neuroimage, 2021, 243: 118503 [2025-06-09]. https://doi.org/10.1016/j.neuroimage.2021.118503. DOI: 10.1016/j.neuroimage.2021.118503.
[9]
LI X L, GAO S L, CAO D N, et al. Research progress of multimodal MRI in brain structure, brain function and brain network of post-stroke depression[J]. Chin J Magn Reson Imaging, 2023, 14(8): 135-139. DOI: 10.12015/issn.1674-8034.2023.08.023.
[10]
ZHU J, XU C, ZHANG X, et al. Altered amplitude of low-frequency fluctuations and regional homogeneity in drug-resistant epilepsy patients with vagal nerve stimulators under different current intensity[J]. CNS Neurosci Ther, 2021, 27(3): 320-329. DOI: 10.1111/cns.13449.
[11]
ZHU Z F, LIU D B, ZHANG J Y, et al. Decreased regional homogeneity in patients with post-stroke depression: a resting-state functional magnetic resonance imaging study[J]. Int J Cerebrovasc Dis, 2012, 20(7): 501-503. DOI: 10.3760/cma.j.issn.1673-4165.2012.07.003
[12]
YUAN P P, HUA X Y. Preoperative early-stage lung cancer patients and local brain area changes: a cross-sectional observational descriptive study[J/OL]. Front Psychol, 2024, 15: 1417668 [2025-06-09]. https://doi.org/10.3389/fpsyg.2024.1417668. DOI: 10.3389/fpsyg.2024.1417668.
[13]
YANG R R, PIAO X Y. Analysis of brain functional activity in patients with post-stroke depression[J]. Hebei Med J, 2019, 41(19): 3007-3009. DOI: 10.3969/j.issn.1002-7386.2019.19.034.
[14]
XU T J, LU M X, LI Y Y, et al. Differences in regional homogeneity and amplitude of low-frequency fluctuation between depressed and non-depressed patients after first-onset unilateral basal ganglia stroke[J]. Chin J Magn Reson Imaging, 2025, 16(5): 102-107. DOI: 10.12015/issn.1674-8034.2025.05.016.
[15]
WU X, WANG L, JIANG H, et al. Frequency-dependent and time-variant alterations of neural activity in post-stroke depression: A resting-state fMRI study[J/OL]. Neuroimage Clin, 2023, 38: 103445 [2025-06-09]. https://doi.org/10.1016/j.nicl.2023.103445. DOI: 10.1016/j.nicl.2023.103445.
[16]
EGOROVA N, VELDSMAN M, CUMMING T, et al. Fractional amplitude of low-frequency fluctuations (fALFF) in post-stroke depression[J]. Neuroimage Clin, 2017, 16: 116-124. DOI: 10.1016/j.nicl.2017.07.014.
[17]
CHAO X, FANG Y, LU Z, et al. Impairments of neurovascular coupling after stroke lower glymphatic system function and lead to depressive symptom: A longitudinal cohort study[J]. J Affect Disord, 2024, 367: 255-262. DOI: 10.1016/j.jad.2024.08.229.
[18]
LIU W, JIANG X, DENG Z, et al. Altered dynamic amplitude of low-frequency fluctuation between bipolar type I and type II in the depressive state[J/OL]. Neuroimage Clin, 2022, 36: 103184 [2025-06-09]. https://doi.org/10.1016/j.nicl.2022.103184. DOI: 10.1016/j.nicl.2022.103184.
[19]
LU Q, LU S, WANG X, et al. Characteristic alterations of dynamic amplitude of low-frequency fluctuation in patients with post-stroke depression[J/OL]. Brain Imaging Behav, 2025[2025-06-09]. https://doi.org/10.1007/s11682-025-01014-9. DOI: 10.1007/s11682-025-01014-9.
[20]
LV Z, CHEN Q, JIANG Y, et al. Abnormal Static and Dynamic Local-Neural Activity in COPD and Its Relationship With Pulmonary Function and Cognitive Impairments[J/OL]. Front Hum Neurosci, 2020, 14: 580238 [2025-06-09]. https://doi.org/10.3389/fnhum.2020.580238. DOI: 10.3389/fnhum.2020.580238.
[21]
MANCUSO L, COSTA T, NANI A, et al. The homotopic connectivity of the functional brain: a meta-analytic approach[J/OL]. Sci Rep, 2019, 9(1): 3346 [2025-06-09]. https://doi.org/10.1038/s41598-019-40188-3. DOI: 10.1038/s41598-019-40188-3.
[22]
YAO G Q. Neuroimaging mechanisms of cognitive function in patients with post-stroke depression[D]. Taiyuan: Shanxi Medical University, 2020. DOI: 10.27288/d.cnki.gsxyu.2020.001125.
[23]
LING Y X, WANG Y T, DENG J, et al. Research progress on the correlation between multimodal magnetic resonance imaging and inflammatory markers in depression[J]. Chin J Magn Reson Imaging, 2025, 16(4): 126-131, 144. DOI: 10.12015/issn.1674-8034.2025.04.020.
[24]
JAYWANT A, DELPONTE L, KANELLOPOULOS D, et al. The Structural and Functional Neuroanatomy of Post-Stroke Depression and Executive Dysfunction: A Review of Neuroimaging Findings and Implications for Treatment[J]. J Geriatr Psychiatry Neurol, 2022, 35(1): 3-11. DOI: 10.1177/0891988720968270.
[25]
CHAO X, FANG Y, WANG J, et al. Abnormal intrinsic brain functional network dynamics in stroke and correlation with neuropsychiatric symptoms revealed based on lesion and cerebral blood flow[J/OL]. Prog Neuropsychopharmacol Biol Psychiatry, 2025, 136: 111181 [2025-06-09]. https://doi.org/10.1016/j.pnpbp.2024.111181. DOI: 10.1016/j.pnpbp.2024.111181.
[26]
WEAVER N A, LIM J S, SCHILDERINCK J, et al. Strategic Infarct Locations for Poststroke Depressive Symptoms: A Lesion- and Disconnection-Symptom Mapping Study[J]. Biol Psychiatry Cogn Neurosci Neuroimaging, 2023, 8(4): 387-396. DOI: 10.1016/j.bpsc.2021.09.002.
[27]
KRICK S, KOOB J L, LATARNIK S, et al. Neuroanatomy of post-stroke depression: the association between symptom clusters and lesion location[J/OL]. Brain Commun, 2023, 5(5): fcad275 [2025-06-09]. https://doi.org/10.1093/braincomms/fcad275. DOI: 10.1093/braincomms/fcad275.
[28]
KLINGBEIL J, BRANDT M L, WAWRZYNIAK M, et al. Association of Lesion Location and Depressive Symptoms Poststroke[J]. Stroke, 2021, 52(3): 830-837. DOI: 10.1161/STROKEAHA.120.031889.
[29]
FAN Y, WANG L, JIANG H, et al. Depression circuit adaptation in post-stroke depression[J]. J Affect Disord, 2023, 336: 52-63. DOI: 10.1016/j.jad.2023.05.016.
[30]
ZHANG P, WANG J, XU Q, et al. Altered functional connectivity in post-ischemic stroke depression: A resting-state functional magnetic resonance imaging study[J]. Eur J Radiol, 2018, 100: 156-165. DOI: 10.1016/j.ejrad.2018.01.003.
[31]
YANG Y, CUI Q, PANG Y, et al. Frequency-specific alteration of functional connectivity density in bipolar disorder depression[J/OL]. Prog Neuropsychopharmacol Biol Psychiatry, 2021, 104: 110026 [2025-06-09]. https://doi.org/10.1016/j.pnpbp.2020.110026. DOI: 10.1016/j.pnpbp.2020.110026.
[32]
YAO J F, XU C, CHEN H Y, et al. Resting-state functional magnetic resonance imaging study on language and non-language cognitive functions related to post-stroke aphasia[J]. Chin J Stroke, 2021, 16(3): 251-258. DOI: 10.3969/j.issn.1673-5765.2021.03.007.
[33]
HONG W, LIU Z, ZHANG X, et al. Distance-related functional reorganization predicts motor outcome in stroke patients[J/OL]. BMC Med, 2024, 22(1): 247 [2025-06-09]. https://doi.org/10.1186/s12916-024-03435-7. DOI: 10.1186/s12916-024-03435-7.
[34]
WAN X, YIN X, CHAI X, et al. Evaluation of Neurovascular Coupling in Early-Onset and Late-Onset Epilepsy of Unknown Etiology[J]. J Magn Reson Imaging, 2025, 61(6): 2489-2500. DOI: 10.1002/jmri.29678.
[35]
LI Q G, ZHAO C, SHAN Y, et al. Dynamic Neural Network Changes Revealed by Voxel-Based Functional Connectivity Strength in Left Basal Ganglia Ischemic Stroke[J/OL]. Front Neurosci, 2020, 14: 526645 [2025-06-09]. https://doi.org/10.3389/fnins.2020.526645. DOI: 10.3389/fnins.2020.526645.
[36]
CHENG B, ROBERTS N, ZHOU Y, et al. Social support mediates the influence of cerebellum functional connectivity strength on postpartum depression and postpartum depression with anxiety[J/OL]. Transl Psychiatry, 2022, 12(1): 54 [2025-06-09]. https://doi.org/10.1038/s41398-022-01781-9. DOI: 10.1038/s41398-022-01781-9.
[37]
ZHU L, YU C X. Research progress of BOLD-fMRI in acupuncture treatment of motor dysfunction rehabilitation after ischemic stroke[J]. Chin J Magn Reson Imaging, 2023, 14(4): 132-136. DOI: 10.12015/issn.1674-8034.2023.04.023.
[38]
XIAO R Z, ZUO L J, ZHOU Y J, et al. Resting-state fMRI study on cognitive impairment and altered dynamic functional connectivity states after minor ischemic stroke[J]. Chin J Stroke, 2021, 16(10): 996-1005. DOI: 10.3969/j.issn.1673-5765.2021.10.004.
[39]
YAO G, LI J, WANG J, et al. Improved Resting-State Functional Dynamics in Post-stroke Depressive Patients After Shugan Jieyu Capsule Treatment[J/OL]. Front Neurosci, 2020, 14: 297 [2025-06-09]. https://doi.org/10.3389/fnins.2020.00297. DOI: 10.3389/fnins.2020.00297.
[40]
LI X J, YU C X, ZHAO C J, et al. Research progress of fMRI in brain network remodeling and neuroplasticity during stroke rehabilitation[J]. Chin J Magn Reson Imaging, 2025, 16(2): 135-141. DOI: 10.12015/issn.1674-8034.2025.02.022.
[41]
ZHANG H, ZHOU Z, DING L, et al. Divergent and Convergent Imaging Markers Between Bipolar and Unipolar Depression Based on Machine Learning[J]. IEEE J Biomed Health Inform, 2022, 26(8): 4100-4110. DOI: 10.1109/JBHI.2022.3166826.
[42]
ŠKOLOUDÍK D, KEŠNEROVÁ P, HRBÁČ T, et al. Risk factors for carotid plaque progression after optimising the risk factor treatment: substudy results of the Atherosclerotic Plaque Characteristics Associated with a Progression Rate of the Plaque and a Risk of Stroke in Patients with the carotid Bifurcation Plaque Study (ANTIQUE)[J]. Stroke Vasc Neurol, 2022, 7(2): 132-139. DOI: 10.1136/svn-2021-001068.
[43]
LEE H, KWON J, LEE J E, et al. Disrupted stepwise functional brain organization in overweight individuals[J/OL]. Commun Biol, 2022, 5(1): 11 [2025-06-09]. https://doi.org/10.1038/s42003-021-02957-7. DOI: 10.1038/s42003-021-02957-7.
[44]
AGOSTA F, SPINELLI E G, BASAIA S, et al. Functional Connectivity From Disease Epicenters in Frontotemporal Dementia[J/OL]. Neurology, 2023, 100(22): e2290-e2303 [2025-06-09]. https://doi.org/10.1212/WNL.0000000000207277. DOI: 10.1212/WNL.0000000000207277.
[45]
FANG Y, CHAO X, LU Z, et al. Mechanisms underlying the spontaneous reorganization of depression network after stroke[J/OL]. Neuroimage Clin, 2025, 45: 103723 [2025-06-09]. https://doi.org/10.1016/j.nicl.2024.103723. DOI: 10.1016/j.nicl.2024.103723.
[46]
CHEN X, SUN X, SHEN F, et al. Exploring the Effects of Action Observation Therapy on Swallowing Disorders in Stroke: A Functional Connectivity-Based fMRI Study[J/OL]. Neural Plast, 2025, 2025: 8176431 [2025-06-09]. https://doi.org/10.1155/np/8176431. DOI: 10.1155/np/8176431.
[47]
SHI Y, ZENG Y, WU L, et al. A Study of the Brain Functional Network of Post-Stroke Depression in Three Different Lesion Locations[J/OL]. Sci Rep, 2017, 7(1): 14795 [2025-06-09]. https://doi.org/10.1038/s41598-017-14675-4. DOI: 10.1038/s41598-017-14675-4.
[48]
WU X, XU K, LI T, et al. Abnormal intrinsic functional hubs and connectivity in patients with post-stroke depression[J]. Ann Clin Transl Neurol, 2024, 11(7): 1852-1867. DOI: 10.1002/acn3.52091.
[49]
MIN Y, LIU C, ZUO L, et al. The relationship between altered degree centrality and cognitive function in mild subcortical stroke: A resting-state fMRI study[J/OL]. Brain Res, 2023, 1798: 148125 [2025-06-09]. https://doi.org/10.1016/j.brainres.2022.148125. DOI: 10.1016/j.brainres.2022.148125.
[50]
ZHANG X, SHI Y, FAN T, et al. Analysis of Correlation Between White Matter Changes and Functional Responses in Post-stroke Depression[J/OL]. Front Aging Neurosci, 2021, 13: 728622 [2025-06-09]. https://doi.org/10.3389/fnagi.2021.728622. DOI: 10.3389/fnagi.2021.728622.
[51]
PENG Y, ZHENG Y, YUAN Z, et al. The characteristics of brain network in patient with post-stroke depression under cognitive task condition[J/OL]. Front Neurosci, 2023, 17: 1242543 [2025-06-09]. https://doi.org/10.3389/fnins.2023.1242543. DOI: 10.3389/fnins.2023.1242543.
[52]
JOUTSA J, CORP D T, FOX M D. Lesion network mapping for symptom localization: recent developments and future directions[J]. Curr Opin Neurol, 2022, 35(4): 453-459. DOI: 10.1097/WCO.0000000000001085.
[53]
BOWREN M, BRUSS J, MANZEL K, et al. Post-stroke outcomes predicted from multivariate lesion-behaviour and lesion network mapping[J]. Brain, 2022, 145(4): 1338-1353. DOI: 10.1093/brain/awac010.
[54]
JIANG J, FERGUSON M A, GRAFMAN J, et al. A Lesion-Derived Brain Network for Emotion Regulation[J]. Biol Psychiatry, 2023, 94(8): 640-649. DOI: 10.1016/j.biopsych.2023.02.007.
[55]
HOWARD C W, FERGUSON M H, SIDDIQI S H, et al. Lesion voxels to lesion networks: The enduring value of the Vietnam Head Injury Study[J]. Cortex, 2024, 172: 109-113. DOI: 10.1016/j.cortex.2023.12.006.
[56]
PADMANABHAN J L, COOKE D, JOUTSA J, et al. A Human Depression Circuit Derived From Focal Brain Lesions[J]. Biol Psychiatry, 2019, 86(10): 749-758. DOI: 10.1016/j.biopsych.2019.07.023.
[57]
SALVALAGGIO A, DE FILIPPO DE GRAZIA M, ZORZI M, et al. Post-stroke deficit prediction from lesion and indirect structural and functional disconnection[J]. Brain, 2020, 143(7): 2173-2188. DOI: 10.1093/brain/awaa156.
[58]
FANG Y, CHAO X, WANG J, et al. Reward Decision Network Disconnection in Poststroke Apathy: A Prospective Multimodality Imaging Study[J/OL]. Hum Brain Mapp, 2025, 46(2): e70139 [2025-06-09]. https://doi.org/10.1002/hbm.70139. DOI: 10.1002/hbm.70139.
[59]
PAN C, LI G, JING P, et al. Structural disconnection-based prediction of poststroke depression[J/OL]. Transl Psychiatry, 2022, 12(1): 461 [2025-06-09]. https://doi.org/10.1038/s41398-022-02223-2. DOI: 10.1038/s41398-022-02223-2.
[60]
KLINGBEIL J, BRANDT M L, STOCKERT A, et al. Associations of lesion location, structural disconnection, and functional diaschisis with depressive symptoms post stroke[J/OL]. Front Neurol, 2023, 14: 1144228 [2025-06-09]. https://doi.org/10.3389/fneur.2023.1144228. DOI: 10.3389/fneur.2023.1144228.
[61]
CHEN Y, LI J, LIAO M, et al. Efficacy and safety of agomelatine versus SSRIs/SNRIs for post-stroke depression: a systematic review and meta-analysis of randomized controlled trials[J]. Int Clin Psychopharmacol, 2024, 39(3): 163-173. DOI: 10.1097/YIC.0000000000000509.
[62]
ZHANG A, WANG X, LI J, et al. Resting-State fMRI in Predicting Response to Treatment With SSRIs in First-Episode, Drug-Naive Patients With Major Depressive Disorder[J/OL]. Front Neurosci, 2022, 16: 831278 [2025-06-09]. https://doi.org/10.3389/fnins.2022.831278. DOI: 10.3389/fnins.2022.831278.
[63]
LI Y, LI K, FENG R, et al. Mechanisms of Repetitive Transcranial Magnetic Stimulation on Post-stroke Depression: A Resting-State Functional Magnetic Resonance Imaging Study[J]. Brain Topogr, 2022, 35(3): 363-374. DOI: 10.1007/s10548-022-00894-0.
[64]
ZHONG J L, JING X S, LIANG Y. Application value of VMHC and ReHo in evaluating the effect of tDCS on cognitive impairment after stroke[J]. Chin J Magn Reson Imaging, 2024, 15(2): 129-134. DOI: 10.12015/issn.1674-8034.2024.02.019.
[65]
NING L, MAKRIS N, CAMPRODON J A, et al. Limits and reproducibility of resting-state functional MRI definition of DLPFC targets for neuromodulation[J]. Brain Stimul, 2019, 12(1): 129-138. DOI: 10.1016/j.brs.2018.10.004.
[66]
DOLS A, BIEMANS T, COOMANS C, et al. Comparison of 5-Day Multidaily Neuronavigated Theta-Burst Sessions With 6-Week Standard Repetitive Transcranial Magnetic Stimulation (the Dutch Depression Outcome Trial): Protocol for a Randomized Controlled Trial[J/OL]. JMIR Res Protoc, 2025, 14: e70121 [2025-06-09]. https://doi.org/10.2196/70121. DOI: 10.2196/70121.

PREV Research progress of magnetic resonance imaging in thalamus of major depressive disorder
NEXT Sex differences in MRI-derived brain networks: linking connectivity to cognitive function and neural mechanisms
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn