Share:
Share this content in WeChat
X
Review
Sex differences in MRI-derived brain networks: linking connectivity to cognitive function and neural mechanisms
CAO Deqin  YU Yinuo  LIU Rongrong  HAO Wenqi  LI Mengqi  CHEN Jiwei  ZHANG Shujun  ZHANG Huiru 

Cite this article as: CAO D Q, YU Y N, LIU R R, et al. Sex differences in MRI-derived brain networks: linking connectivity to cognitive function and neural mechanisms[J]. Chin J Magn Reson Imaging, 2025, 16(9): 188-192, 202. DOI:10.12015/issn.1674-8034.2025.09.028.


[Abstract] There are significant sex differences in the structure and function of brain networks, a phenomenon that has garnered increasing attention in neuroimaging research. Brain network analysis based on multimodal neuroimaging techniques provides a crucial approach to understanding the sexual dimorphism in cognitive functions and differences in susceptibility to neuropsychiatric disorders, offering potential clinical value for advancing precision interventions in brain health. This review systematically summarizes recent advances in the study of sex differences in brain networks, focusing on structural disparities such as stronger intra-hemispheric connectivity in males and greater inter-hemispheric integration in females, as well as functional connectivity patterns including differentiation in the default mode and salience networks. It also explores the association of these differences with sex-biased mechanisms in disorders such as Alzheimer´s disease and autism spectrum disorder. Furthermore, the review analyzes current research limitations and suggests directions for future studies. Finally, it outlines the potential applications of brain network analysis in cognitive neuroscience and sex-specific clinical diagnosis and treatment, providing a theoretical foundation for developing gender-based brain function assessment and intervention strategies.
[Keywords] functional connectivity;structural networks;sex differences;magnetic resonance imaging;multimodal imaging

CAO Deqin1   YU Yinuo1   LIU Rongrong1   HAO Wenqi1   LI Mengqi1   CHEN Jiwei1   ZHANG Shujun2   ZHANG Huiru1*  

1 School of Medical Imaging and Laboratory Medicine, Jining Medical University, Jining 272067, China

2 Department of Medical Imaging, Affiliated Hospital of Jining Medical University, Jining 272029, China

Corresponding author: ZHANG H R, E-mail: zhanghr1125@163.com

Conflicts of interest   None.

Received  2025-06-11
Accepted  2025-09-05
DOI: 10.12015/issn.1674-8034.2025.09.028
Cite this article as: CAO D Q, YU Y N, LIU R R, et al. Sex differences in MRI-derived brain networks: linking connectivity to cognitive function and neural mechanisms[J]. Chin J Magn Reson Imaging, 2025, 16(9): 188-192, 202. DOI:10.12015/issn.1674-8034.2025.09.028.

[1]
ZHANG L, HE J L, LI W, et al. Diff-DTI: fast diffusion tensor imaging using a feature-enhanced joint diffusion model[J/OL]. IEEE J Biomed Health Inform, 2024[2025-06-10]. https://pubmed.ncbi.nlm.nih.gov/40030783/. DOI: 10.1109/JBHI.2024.3523532.
[2]
DREW P J. Vascular and neural basis of the BOLD signal[J/OL]. Curr Opin Neurobiol, 2019, 58: 61-69 [2025-06-10]. https://pubmed.ncbi.nlm.nih.gov/31336326/. DOI: 10.1016/j.conb.2019.06.004.
[3]
SYDNOR V J, LARSEN B, BASSETT D S, et al. Neurodevelopment of the association cortices: patterns, mechanisms, and implications for psychopathology[J]. Neuron, 2021, 109(18): 2820-2846. DOI: 10.1016/j.neuron.2021.06.016.
[4]
WIERENGA L M, DOUCET G E, DIMA D N, et al. Greater male than female variability in regional brain structure across the lifespan[J]. Hum Brain Mapp, 2022, 43(1): 470-499. DOI: 10.1002/hbm.25204.
[5]
BELL T R, FRANZ C E, EYLER L T, et al. Probable chronic pain, brain structure, and Alzheimer's plasma biomarkers in older men[J/OL]. J Pain, 2024, 25(6): 104463 [2025-06-10]. https://pubmed.ncbi.nlm.nih.gov/38199594/. DOI: 10.1016/j.jpain.2024.01.006.
[6]
MATTE BON G, KRAFT D, KAUFMANN T. How sex and gender shape functional brain networks[J/OL]. Sci Adv, 2024, 10(28): eadq3079 [2025-06-10]. https://pubmed.ncbi.nlm.nih.gov/38996016/. DOI: 10.1126/sciadv.adq3079.
[7]
HARIKUMAR A, EVANS D W, DOUGHERTY C C, et al. A review of the default mode network in autism spectrum disorders and attention deficit hyperactivity disorder[J]. Brain Connect, 2021, 11(4): 253-263. DOI: 10.1089/brain.2020.0865.
[8]
CAHILL L. Fundamental sex difference in human brain architecture[J]. Proc Natl Acad Sci USA, 2014, 111(2): 577-578. DOI: 10.1073/pnas.1320954111.
[9]
DONG C X, SUN D D. Brain network classification based on dynamic graph attention information bottleneck[J/OL]. Comput Methods Programs Biomed, 2024, 243: 107913 [2025-06-10]. https://pubmed.ncbi.nlm.nih.gov/37952340/. DOI: 10.1016/j.cmpb.2023.107913.
[10]
YAO Z J, HU B, XIE Y W, et al. A review of structural and functional brain networks: small world and atlas[J]. Brain Inform, 2015, 2(1): 45-52. DOI: 10.1007/s40708-015-0009-z.
[11]
SPORNS O, HONEY C J, KÖTTER R. Identification and classification of hubs in brain networks[J/OL]. PLoS One, 2007, 2(10): e1049 [2025-06-10]. https://pubmed.ncbi.nlm.nih.gov/17940613/. DOI: 10.1371/journal.pone.0001049.
[12]
TZOURIO-MAZOYER N, LANDEAU B, PAPATHANASSIOU D, et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain[J]. Neuroimage, 2002, 15(1): 273-289. DOI: 10.1006/nimg.2001.0978.
[13]
WIG G S, SCHLAGGAR B L, PETERSEN S E. Concepts and principles in the analysis of brain networks[J/OL]. Ann N Y Acad Sci, 2011, 1224: 126-146 [2025-06-10]. https://pubmed.ncbi.nlm.nih.gov/21486299/. DOI: 10.1111/j.1749-6632.2010.05947.x.
[14]
SEGAL A, PARKES L, AQUINO K, et al. Regional, circuit and network heterogeneity of brain abnormalities in psychiatric disorders[J]. Nat Neurosci, 2023, 26(9): 1613-1629. DOI: 10.1038/s41593-023-01404-6.
[15]
SANG F, CHEN Y J, CHEN K W, et al. Sex differences in cortical morphometry and white matter microstructure during brain aging and their relationships to cognition[J]. Cereb Cortex, 2021, 31(11): 5253-5262. DOI: 10.1093/cercor/bhab155.
[16]
LIU J X, HU Y H, ZONG B Y, et al. Functional characteristics of the frontal cortex during the verbal fluency task in subthreshold depression: a fNIRS study[J/OL]. J Affect Disord, 2025, 384: 144-150 [2025-06-10]. https://pubmed.ncbi.nlm.nih.gov/40311813/. DOI: 10.1016/j.jad.2025.04.166.
[17]
TOMASI D, VOLKOW N D. Gender differences in brain functional connectivity density[J]. Hum Brain Mapp, 2012, 33(4): 849-860. DOI: 10.1002/hbm.21252.
[18]
VOGEL T, SMIESKOVA R, SCHMIDT A, et al. Increased superior frontal gyrus activation during working memory processing in psychosis: Significant relation to cumulative antipsychotic medication and to negative symptoms[J]. Schizophr Res, 2016, 175(1/2/3): 20-26. DOI: 10.1016/j.schres.2016.03.033.
[19]
WATANABE H, OGOH S, MIYAMOTO N, et al. Greater task difficulty during unilateral motor tasks changes intracortical inhibition and facilitation in the ipsilateral primary motor cortex in young men[J/OL]. Neurosci Lett, 2023, 808: 137293 [2025-06-10]. https://pubmed.ncbi.nlm.nih.gov/37169163/. DOI: 10.1016/j.neulet.2023.137293.
[20]
PENG Z Y, DAI C M, CAI X P, et al. Total sleep deprivation impairs lateralization of spatial working memory in young men[J/OL]. Front Neurosci, 2020, 14: 562035 [2025-06-10]. https://pubmed.ncbi.nlm.nih.gov/33122988/. DOI: 10.3389/fnins.2020.562035.
[21]
NEWMAN S D. Differences in cognitive ability and apparent sex differences in corpus callosum size[J]. Psychol Res, 2016, 80(5): 853-859. DOI: 10.1007/s00426-015-0688-3.
[22]
MARTÍNEZ K, JANSSEN J, PINEDA-PARDO J Á, et al. Individual differences in the dominance of interhemispheric connections predict cognitive ability beyond sex and brain size[J/OL]. Neuroimage, 2017, 155: 234-244 [2025-06-10]. https://pubmed.ncbi.nlm.nih.gov/28414185/. DOI: 10.1016/j.neuroimage.2017.04.029.
[23]
WILLIS M W, KETTER T A, KIMBRELL T A, et al. Age, sex and laterality effects on cerebral glucose metabolism in healthy adults[J]. Psychiatry Res, 2002, 114(1): 23-37. DOI: 10.1016/s0925-4927(01)00126-3.
[24]
FENG B, CAO J, YU Y P, et al. Gender-related differences in regional cerebral glucose metabolism in normal aging brain[J/OL]. Front Aging Neurosci, 2022, 14: 809767 [2025-06-10]. https://pubmed.ncbi.nlm.nih.gov/35221996/. DOI: 10.3389/fnagi.2022.809767.
[25]
ZHANG C P, HAO Y, HUANG G, et al. Hypometabolism of the left middle/medial frontal lobe on FDG-PET in anti-NMDA receptor encephalitis: Comparison with MRI and EEG findings[J]. CNS Neurosci Ther, 2023, 29(6): 1624-1635. DOI: 10.1111/cns.14125.
[26]
STEVENS J S, HAMANN S. Sex differences in brain activation to emotional stimuli: a meta-analysis of neuroimaging studies[J]. Neuropsychologia, 2012, 50(7): 1578-1593. DOI: 10.1016/j.neuropsychologia.2012.03.011.
[27]
LIU D Y, LI M, YU J, et al. Sex differences in the human brain related to visual motion perception[J/OL]. Biol Sex Differ, 2024, 15(1): 92 [2025-06-10]. https://pubmed.ncbi.nlm.nih.gov/39529200/. DOI: 10.1186/s13293-024-00668-2.
[28]
LV C, XIAO Z, SUN Y, et al. Gender-specific resting-state rDMPFC-centric functional connectivity underpinnings of intertemporal choice[J]. Cereb Cortex, 2023, 33(18): 10066-10075. DOI: 10.1093/cercor/bhad265.
[29]
VAN PELT S, SHUMSKAYA E, FRIES P. Cortical volume and sex influence visual gamma[J/OL]. NeuroImage, 2018, 178: 702-712 [2015-06-10]. https://pubmed.ncbi.nlm.nih.gov/29883733/. DOI: 10.1016/j.neuroimage.2018.06.005.
[30]
SU M, HU K, LIU W, et al. Theta oscillations support prefrontal-hippocampal interactions in sequential working memory[J]. Neurosci Bull, 2024, 40(2): 147-156. DOI: 10.1007/s12264-023-01134-6.
[31]
TRIPATHI V, BATTA I, ZAMANI A, et al. Default mode network functional connectivity as a transdiagnostic biomarker of cognitive function[J]. Biol Psychiatry Cogn Neurosci Neuroimaging, 2025, 10(4): 359-368. DOI: 10.1016/j.bpsc.2024.12.016.
[32]
PAN C X, LI R R, YUAN X, et al. Neural network disruptions between default mode network and salience network in mild cognitive impairment with neuropsychiatric symptoms[J/OL]. Int Psychogeriatr, 2025: 100092 [2025-06-10]. https://pubmed.ncbi.nlm.nih.gov/40413109/. DOI: 10.1016/j.inpsyc.2025.100092.
[33]
HUANG H, QIN X, XU R, et al. Default mode network, disorganization, and treatment-resistant schizophrenia[J/OL]. Schizophr Bull, 2025: sbaf018 [2025-06-10]. https://pubmed.ncbi.nlm.nih.gov/40037577/. DOI: 10.1093/schbul/sbaf018.
[34]
HE Y, SWEATMAN H, THOMSON A R, et al. Regional excitatory-inhibitory balance relates to self-reference effect on recollection via the precuneus/posterior cingulate cortex-medial prefrontal cortex connectivity[J/OL]. J Neurosci, 2025, 45(25): e2343242025 [2025-06-10]. https://pubmed.ncbi.nlm.nih.gov/40393808/. DOI: 10.1523/JNEUROSCI.2343-24.2025.
[35]
GILFARB R A, RANADE S, DYBAS E, et al. Hormonal contraceptives in adolescence impact the neuroimmune environment of the medial prefrontal cortex and hippocampus in female rats[J/OL]. Brain Behav Immun, 2025, 127: 315-328 [2025-06-10]. https://pubmed.ncbi.nlm.nih.gov/39978694/. DOI: 10.1016/j.bbi.2025.02.016.
[36]
YANG Z S, CIERI F, KINNEY J W, et al. Brain functional topology differs by sex in cognitively normal older adults[J/OL]. Cereb Cortex Commun, 2022, 3(3): tgac023 [2025-06-10]. https://pubmed.ncbi.nlm.nih.gov/35795479/. DOI: 10.1093/texcom/tgac023.
[37]
HARRIS J C, LIUZZI M T, CARDENAS-INIGUEZ C, et al. Gray space and default mode network-amygdala connectivity[J/OL]. Front Hum Neurosci, 2023, 17: 1167786 [2025-06-10]. https://pubmed.ncbi.nlm.nih.gov/37711221/. DOI: 10.3389/fnhum.2023.1167786.
[38]
CLANCY K J, DEVIGNES Q, KUMAR P, et al. Circulating PACAP levels are associated with increased amygdala-default mode network resting-state connectivity in posttraumatic stress disorder[J]. Neuropsychopharmacology, 2023, 48(8): 1245-1254. DOI: 10.1038/s41386-023-01593-5.
[39]
RIVA D. Sex and gender difference in cognitive and behavioral studies in developmental age: an introduction[J]. J Neurosci Res, 2023, 101(5): 543-552. DOI: 10.1002/jnr.24970.
[40]
SONG Z Y, JIANG Z Q, ZHANG Z, et al. Evolving brain network dynamics in early childhood: Insights from modular graph metrics[J/OL]. NeuroImage, 2024, 297: 120740 [2025-06-10]. https://pubmed.ncbi.nlm.nih.gov/39047590/. DOI: 10.1016/j.neuroimage.2024.120740.
[41]
TAVARES V, FERNANDES L A, ANTUNES M, et al. Sex differences in functional connectivity between resting state brain networks in autism spectrum disorder[J]. J Autism Dev Disord, 2022, 52(7): 3088-3101. DOI: 10.1007/s10803-021-05191-6.
[42]
NAMGUNG J Y, MUN J, PARK Y, et al. Sex differences in autism spectrum disorder using class imbalance adjusted functional connectivity[J/OL]. Neuroimage, 2024, 304: 120956 [2025-06-10]. https://pubmed.ncbi.nlm.nih.gov/39603483/. DOI: 10.1016/j.neuroimage.2024.120956.
[43]
YUAN L, KONG F, LUO Y M, et al. Gender differences in large-scale and small-scale spatial ability: a systematic review based on behavioral and neuroimaging research[J/OL]. Front Behav Neurosci, 2019, 13: 128 [2025-06-10]. https://pubmed.ncbi.nlm.nih.gov/31275121/. DOI: 10.3389/fnbeh.2019.00128.
[44]
WANG X, DAI M X, MURRAY A, et al. Psychometric properties of the Chinese version of the children's empathy quotient and systemizing quotient: 4-12 years[J]. Autism Res, 2022, 15(9): 1675-1685. DOI: 10.1002/aur.2743.
[45]
GHAZY N, RATNER E, ROSENBERG-LEE M. Differential contributions of empathy to math achievement in women and men[J/OL]. Front Psychol, 2019, 10: 1941 [2025-06-10]. https://pubmed.ncbi.nlm.nih.gov/31572249/. DOI: 10.3389/fpsyg.2019.01941.
[46]
WANG Q, QI L Y, HE C C, et al. Age- and gender-related dispersion of brain networks across the lifespan[J]. Geroscience, 2024, 46(1): 1303-1318. DOI: 10.1007/s11357-023-00900-8.
[47]
CASTELLI V, LAVANCO G, TRINGALI G, et al. Prenatal THC exposure drives sex-specific alterations in spatial memory and hippocampal excitatory/inhibitory balance in adolescent rats[J/OL]. Biomed Pharmacother, 2024, 181: 117699 [2025-06-10]. https://pubmed.ncbi.nlm.nih.gov/39571245/. DOI: 10.1016/j.biopha.2024.117699.
[48]
GAGNON K T, THOMAS B J, MUNION A, et al. Not all those who wander are lost: spatial exploration patterns and their relationship to gender and spatial memory[J/OL]. Cognition, 2018, 180: 108-117 [2025-06-10]. https://pubmed.ncbi.nlm.nih.gov/30015210/. DOI: 10.1016/j.cognition.2018.06.020.
[49]
TANG R X, ELMAN J A, DALE A M, et al. Childhood disadvantage moderates late midlife default mode network cortical microstructure and visual memory association[J/OL]. J Gerontol A Biol Sci Med Sci, 2024, 79(1): glad114 [2025-06-10]. https://pubmed.ncbi.nlm.nih.gov/37096346/. DOI: 10.1093/gerona/glad114.
[50]
JENNI N L, BERCOVICI D A, FLORESCO S B. Medial orbitofrontal, prefrontal and amygdalar circuits support dissociable component processes of risk/reward decision making[J/OL]. J Neurosci, 2025, 45(16): e2147242025 [2025-06-10]. https://pubmed.ncbi.nlm.nih.gov/40068869/. DOI: 10.1523/JNEUROSCI.2147-24.2025.
[51]
SARICA A, PELAGI A, ARACRI F, et al. Sex differences in conversion risk from mild cognitive impairment to Alzheimer's disease: an explainable machine learning study with random survival forests and SHAP[J/OL]. Brain Sci, 2024, 14(3): 201 [2025-06-10]. https://pubmed.ncbi.nlm.nih.gov/38539590/. DOI: 10.3390/brainsci14030201.
[52]
VARELA-LÓPEZ B, RIVAS-FERNÁNDEZ M A, ZURRÓN M, et al. Alterations in functional connectivity in individuals with subjective cognitive decline and hippocampal atrophy[J/OL]. Int Psychogeriatr, 2025: 100067 [2025-06-10]. https://pubmed.ncbi.nlm.nih.gov/40169304/. DOI: 10.1016/j.inpsyc.2025.100067.
[53]
MOSCONI L, WILLIAMS S, CARLTON C, et al. Neurophysiological correlates of subjective cognitive decline in perimenopausal and postmenopausal midlife women at risk for Alzheimer's disease[J]. Menopause, 2025, 32(5): 433-442. DOI: 10.1097/GME.0000000000002512.
[54]
SCATTONI M L, FATTA L M, MICAI M, et al. Autism spectrum disorder prevalence in Italy: a nationwide study promoted by the ministry of health[J/OL]. Child Adolesc Psychiatry Ment Health, 2023, 17(1): 125 [2025-06-10]. https://pubmed.ncbi.nlm.nih.gov/37898807/. DOI: 10.1186/s13034-023-00673-0.
[55]
MENDES M, CHEN D Z, ENGCHUAN W, et al. Chromosome X-wide common variant association study in autism spectrum disorder[J]. Am J Hum Genet, 2025, 112(1): 135-153. DOI: 10.1016/j.ajhg.2024.11.008.
[56]
WANG L, QIN Y, YANG S H, et al. Posterior default mode network is associated with the social performance in male children with autism spectrum disorder: a dynamic causal modeling analysis based on triple-network model[J/OL]. Hum Brain Mapp, 2024, 45(8): e26750 [2025-06-10]. https://pubmed.ncbi.nlm.nih.gov/38853710/. DOI: 10.1002/hbm.26750.
[57]
MARSHALL E, NOMI J S, DIRKS B, et al. Coactivation pattern analysis reveals altered salience network dynamics in children with autism spectrum disorder[J]. Netw Neurosci, 2020, 4(4): 1219-1234. DOI: 10.1162/netn_a_00163.
[58]
CHEN K X, YANG J, LI F, et al. Molecular basis underlying default mode network functional abnormalities in postpartum depression with and without anxiety[J/OL]. Hum Brain Mapp, 2024, 45(5): e26657 [2025-06-10]. https://pubmed.ncbi.nlm.nih.gov/38544486/. DOI: 10.1002/hbm.26657.
[59]
BRAND B A, SOMMER I E, GANGADIN S S, et al. Real-world effectiveness of menopausal hormone therapy in preventing relapse in women with schizophrenia or schizoaffective disorder[J]. Am J Psychiatry, 2024, 181(10): 893-900. DOI: 10.1176/appi.ajp.20230850.

PREV Research progress on resting-state functional magnetic resonance imaging in post-stroke depression
NEXT Research progress on magnetic resonance imaging of perivascular space in multiple sclerosis
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn