Share:
Share this content in WeChat
X
Review
Research progress on magnetic resonance imaging of perivascular space in multiple sclerosis
ZHANG Kai  LI Yongmei 

Cite this article as: ZHANG K, LI Y M. Research progress on magnetic resonance imaging of perivascular space in multiple sclerosis[J]. Chin J Magn Reson Imaging, 2025, 16(9): 193-196. DOI:10.12015/issn.1674-8034.2025.09.029.


[Abstract] Multiple sclerosis (MS) is a chronic autoimmune inflammatory disease of the central nervous system, characterized by microglial and leukocyte infiltration, axonal damage, and demyelination. As a key metabolic waste clearance structure of the glymphatic system (GS), dysfunction in the dynamic circulation of the perivascular space (PVS) is closely associated with neurological disorders such as MS. This review systematically summarizes the latest advancements and clinical values of PVS in MS, identify the current challenges about PVS research, and offer some future research directions, aiming to provide novel imaging insights for early diagnosis, disease monitoring and therapeutic evaluation of patients with MS.
[Keywords] multiple sclerosis;perivascular spaces;glymphatic system;magnetic resonance imaging

ZHANG Kai   LI Yongmei*  

Department of Imaging, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China

Corresponding author: LI Y M, E-mail: lymzhang70@163.com

Conflicts of interest   None.

Received  2025-05-08
Accepted  2025-08-28
DOI: 10.12015/issn.1674-8034.2025.09.029
Cite this article as: ZHANG K, LI Y M. Research progress on magnetic resonance imaging of perivascular space in multiple sclerosis[J]. Chin J Magn Reson Imaging, 2025, 16(9): 193-196. DOI:10.12015/issn.1674-8034.2025.09.029.

[1]
JAKIMOVSKI D, BITTNER S, ZIVADINOV R, et al. Multiple sclerosis[J]. Lancet, 2024, 403(10422): 183-202. DOI: 10.1016/s0140-6736(23)01473-3.
[2]
SHULYATNIKOVA T, HAYDEN M R. Why Are Perivascular Spaces Important?[J/OL]. Medicina (Kaunas), 2023, 59(5): 917 [2025-05-08]. https://pubmed.ncbi.nlm.nih.gov/37241149/. DOI: 10.3390/medicina59050917.
[3]
LYNCH M, PHAM W, SINCLAIR B, et al. Perivascular spaces as a potential biomarker of Alzheimer's disease[J/OL]. Front Neurosci, 2022, 16: 1021131 [2025-05-08]. https://doi.org/10.3389/fnins.2022.1021131. DOI: 10.3389/fnins.2022.1021131.
[4]
MESTRE H, MORI Y, NEDERGAARD M. The Brain's Glymphatic System: Current Controversies[J]. Trends Neurosci, 2020, 43(7): 458-466. DOI: 10.1016/j.tins.2020.04.003.
[5]
OKAR S V, HU F, SHINOHARA R T, et al. The etiology and evolution of magnetic resonance imaging-visible perivascular spaces: Systematic review and meta-analysis[J/OL]. Front Neurosci, 2023, 17: 1038011 [2025-05-08]. https://doi.org/10.3389/fnins.2023.1038011. DOI: 10.3389/fnins.2023.1038011.
[6]
FILIPPI M, PREZIOSA P, BARKHOF F, et al. The ageing central nervous system in multiple sclerosis: the imaging perspective[J]. Brain, 2024, 147(11): 3665-3680. DOI: 10.1093/brain/awae251.
[7]
GRANBERG T, MORIDI T, BRAND J S, et al. Enlarged perivascular spaces in multiple sclerosis on magnetic resonance imaging: a systematic review and meta-analysis[J]. J Neurol, 2020, 267(11): 3199-3212. DOI: 10.1007/s00415-020-09971-5.
[8]
BAKKER E N, BACSKAI B J, ARBEL-ORNATH M, et al. Lymphatic Clearance of the Brain: Perivascular, Paravascular and Significance for Neurodegenerative Diseases[J]. Cell Mol Neurobiol, 2016, 36(2): 181-194. DOI: 10.1007/s10571-015-0273-8.
[9]
BOUVY W H, BIESSELS G J, KUIJF H J, et al. Visualization of perivascular spaces and perforating arteries with 7 T magnetic resonance imaging[J]. Invest Radiol, 2014, 49(5): 307-313. DOI: 10.1097/rli.0000000000000027.
[10]
DEMIR Z, SAIB G, TALAGALA L, et al. Exploring cortical perivascular space as a biomarker in neurodegenerative diseases through optimized CSF‐only MRI at 7T[J/OL]. Alzheimer's & Dementia, 2025, 20(S8) [2025-05-08]. https://doi.org/10.1002/alz.095695. DOI: 10.1002/alz.095695.
[11]
BOUTINAUD P, TSUCHIDA A, LAURENT A, et al. 3D Segmentation of Perivascular Spaces on T1-Weighted 3 Tesla MR Images With a Convolutional Autoencoder and a U-Shaped Neural Network[J/OL]. Front Neuroinform, 2021, 15: 641600 [2025-05-08]. https://doi.org/10.3389/fninf.2021.641600. DOI: 10.3389/fninf.2021.641600.
[12]
SEPEHRBAND F, BARISANO G, SHEIKH-BAHAEI N, et al. Image processing approaches to enhance perivascular space visibility and quantification using MRI[J/OL]. Sci Rep, 2019, 9(1): 12351 [2025-05-08]. https://doi.org/10.1038/s41598-019-48910-x. DOI: 10.1038/s41598-019-48910-x.
[13]
BALLERINI L, BOOTH T, VALDéS HERNáNDEZ M D C, et al. Computational quantification of brain perivascular space morphologies: Associations with vascular risk factors and white matter hyperintensities. A study in the Lothian Birth Cohort 1936[J/OL]. Neuroimage Clin, 2020, 25: 102120 [2025-05-08]. https://doi.org/10.1016/j.nicl.2019.102120. DOI: 10.1016/j.nicl.2019.102120.
[14]
HAN G, JIAO B, ZHANG Y, et al. Arterial pulsation dependence of perivascular cerebrospinal fluid flow measured by dynamic diffusion tensor imaging in the human brain[J/OL]. Neuroimage, 2024, 297: 120653 [2025-05-08]. https://doi.org/10.1016/j.neuroimage.2024.120653. DOI: 10.1016/j.neuroimage.2024.120653.
[15]
KEDARASETTI R T, DREW P J, COSTANZO F. Arterial vasodilation drives convective fluid flow in the brain: a poroelastic model[J/OL]. Fluids Barriers CNS, 2022, 19(1): 34 [2025-05-08]. https://doi.org/10.1186/s12987-022-00326-y. DOI: 10.1186/s12987-022-00326-y.
[16]
ILIFF J J, WANG M, LIAO Y, et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β[J/OL]. Sci Transl Med, 2012, 4(147): 147ra11 [2025-05-08]. https://pubmed.ncbi.nlm.nih.gov/22896675/. DOI: 10.1126/scitranslmed.3003748.
[17]
ZHANG M, TANG J, XIA D, et al. Evaluation of glymphatic-meningeal lymphatic system with intravenous gadolinium-based contrast-enhancement in cerebral small-vessel disease[J]. Eur Radiol, 2023, 33(9): 6096-6106. DOI: 10.1007/s00330-023-09796-6.
[18]
TAOKA T, MASUTANI Y, KAWAI H, et al. Evaluation of glymphatic system activity with the diffusion MR technique: diffusion tensor image analysis along the perivascular space (DTI-ALPS) in Alzheimer's disease cases[J]. Jpn J Radiol, 2017, 35(4): 172-178. DOI: 10.1007/s11604-017-0617-z.
[19]
TAOKA T, ITO R, NAKAMICHI R, et al. Diffusion-weighted image analysis along the perivascular space (DWI-ALPS) for evaluating interstitial fluid status: age dependence in normal subjects[J]. Jpn J Radiol, 2022, 40(9): 894-902. DOI: 10.1007/s11604-022-01275-0.
[20]
SHI C, GUO G, WANG W, et al. Impaired glymphatic clearance in multiple system atrophy: A diffusion spectrum imaging study[J/OL]. Parkinsonism Relat Disord, 2024, 123: 106950 [2025-05-08]. https://doi.org/10.1016/j.parkreldis.2024.106950. DOI: 10.1016/j.parkreldis.2024.106950.
[21]
CAO Y, HUANG M, FU F, et al. Abnormally glymphatic system functional in patients with migraine: a diffusion kurtosis imaging study[J/OL]. J Headache Pain, 2024, 25(1): 118 [2025-05-08]. https://doi.org/10.1186/s10194-024-01825-z. DOI: 10.1186/s10194-024-01825-z.
[22]
ZHU W, HUANG H, ZHOU Y, et al. Automatic segmentation of white matter hyperintensities in routine clinical brain MRI by 2D VB-Net: A large-scale study[J/OL]. Front Aging Neurosci, 2022, 14: 915009 [2025-05-08]. https://doi.org/10.3389/fnagi.2022.915009. DOI: 10.3389/fnagi.2022.915009.
[23]
ROCCA M A, PREZIOSA P, FILIPPI M. Advances in neuroimaging of multiple sclerosis[J]. Curr Opin Neurol, 2025, 38(3): 205-216. DOI: 10.1097/wco.0000000000001360.
[24]
HUANG P, ZHANG R, JIAERKEN Y, et al. Deep white matter hyperintensity is associated with the dilation of perivascular space[J]. J Cereb Blood Flow Metab, 2021, 41(9): 2370-2380. DOI: 10.1177/0271678x211002279.
[25]
BARNES A, BALLERINI L, VALDéS HERNáNDEZ M D C, et al. Topological relationships between perivascular spaces and progression of white matter hyperintensities: A pilot study in a sample of the Lothian Birth Cohort 1936[J/OL]. Front Neurol, 2022, 13: 889884 [2025-05-08]. https://doi.org/10.3389/fneur.2022.889884. DOI: 10.3389/fneur.2022.889884.
[26]
WANG S, HUANG P, ZHANG R, et al. Quantity and Morphology of Perivascular Spaces: Associations With Vascular Risk Factors and Cerebral Small Vessel Disease[J]. J Magn Reson Imaging, 2021, 54(4): 1326-1336. DOI: 10.1002/jmri.27702.
[27]
SABAYAN B, WESTENDORP R G J. Neurovascular-glymphatic dysfunction and white matter lesions[J]. Geroscience, 2021, 43(4): 1635-42. DOI: 10.1007/s11357-021-00361-x.
[28]
SEPEHRBAND F, CABEEN R P, CHOUPAN J, et al. Perivascular space fluid contributes to diffusion tensor imaging changes in white matter[J]. Neuroimage, 2019, 197: 243-254. DOI: 10.1016/j.neuroimage.2019.04.070.
[29]
JIAERKEN Y, LIAN C, HUANG P, et al. Dilated perivascular space is related to reduced free-water in surrounding white matter among healthy adults and elderlies but not in patients with severe cerebral small vessel disease[J]. J Cereb Blood Flow Metab, 2021, 41(10): 2561-2570. DOI: 10.1177/0271678x211005875.
[30]
BOWN C W, KHAN O A, LIU D, et al. Enlarged perivascular space burden associations with arterial stiffness and cognition[J]. Neurobiol Aging, 2023, 124: 85-97. DOI: 10.1016/j.neurobiolaging.2022.10.014.
[31]
JAVIERRE-PETIT C, SCHNEIDER J A, KAPASI A, et al. Neuropathologic and Cognitive Correlates of Enlarged Perivascular Spaces in a Community-Based Cohort of Older Adults[J]. Stroke, 2020, 51(9): 2825-2833. DOI: 10.1161/strokeaha.120.029388.
[32]
INEICHEN B V, CANANAU C, PLATTÉN M, et al. Dilated Virchow-Robin spaces are a marker for arterial disease in multiple sclerosis[J/OL]. EBioMedicine, 2023, 92: 104631 [2025-05-08]. https://doi.org/10.1016/j.ebiom.2023.104631. DOI: 10.1016/j.ebiom.2023.104631.
[33]
CSOMÓS M, VERÉB D, KOCSIS K, et al. Evaluation of the glymphatic system in relapsing remitting multiple sclerosis by measuring the diffusion along the perivascular space[J/OL]. Magn Reson Imaging, 2025, 117: 110319 [2025-05-08]. https://doi.org/10.1016/j.mri.2025.110319. DOI: 10.1016/j.mri.2025.110319.
[34]
LIU S, HOU B, YOU H, et al. The Association Between Perivascular Spaces and Cerebral Blood Flow, Brain Volume, and Cardiovascular Risk[J/OL]. Front Aging Neurosci, 2021, 13: 599724 [2025-05-08]. https://doi.org/10.3389/fnagi.2021.599724. DOI: 10.3389/fnagi.2021.599724.
[35]
VIDAL-PIÑEIRO D, SØRENSEN Ø, BLENNOW K, et al. Relationship between cerebrospinal fluid neurodegeneration biomarkers and temporal brain atrophy in cognitively healthy older adults[J]. Neurobiol Aging, 2022, 116: 80-91. DOI: 10.1016/j.neurobiolaging.2022.04.010.
[36]
BURGETOVA A, DUSEK P, UHER T, et al. Oxidative Stress Markers in Cerebrospinal Fluid of Newly Diagnosed Multiple Sclerosis Patients and Their Link to Iron Deposition and Atrophy[J/OL]. Diagnostics (Basel), 2022, 12(6): 1365 [2025-05-08]. https://doi.org/10.3390/diagnostics12061365. DOI: 10.3390/diagnostics12061365.
[37]
SUGAI Y, NIINO K, SHIBATA A, et al. Association between visualization of the perivascular space and morphological changes in the brain among the community-dwelling elderly[J/OL]. Eur J Radiol, 2023, 162: 110792 [2025-05-08]. https://doi.org/10.1016/j.ejrad.2023.110792. DOI: 10.1016/j.ejrad.2023.110792.
[38]
BORRELLI S, GUISSET F, VANDEN BULCKE C, et al. Enlarged perivascular spaces are associated with brain microangiopathy and aging in multiple sclerosis[J]. Mult Scler, 2024, 30(8): 983-993. DOI: 10.1177/13524585241256881.
[39]
LIU X Y, MA G Y, WANG S, et al. Perivascular space is associated with brain atrophy in patients with multiple sclerosis[J]. Quantitative imaging in medicine and surgery, 2022, 12(2): 1004-1019. DOI: 10.21037/qims-21-705.
[40]
TOMIZAWA Y, HAGIWARA A, HOSHINO Y, et al. The glymphatic system as a potential biomarker and therapeutic target in secondary progressive multiple sclerosis[J/OL]. Mult Scler Relat Disord, 2024, 83: 105437 [2025-05-08]. https://doi.org/10.1016/j.msard.2024.105437. DOI: 10.1016/j.msard.2024.105437.
[41]
WOOLISCROFT L, BOESPFLUG E, HILDEBRAND A, et al. Enlarged perivascular spaces are not associated with vascular co-morbidities, clinical outcomes, and brain volumes in people with secondary progressive multiple sclerosis[J/OL]. Mult Scler J Exp Transl Clin, 2020, 6(4): 2055217320964502 [2025-05-08]. https://doi.org/10.1177/2055217320964502. DOI: 10.1177/2055217320964502.
[42]
XIE Y, ZHU H, YAO Y, et al. Enlarged choroid plexus in relapsing-remitting multiple sclerosis may lead to brain structural changes through the glymphatic impairment[J/OL]. Mult Scler Relat Disord, 2024, 85: 105550 [2025-05-08]. https://doi.org/10.1016/j.msard.2024.105550. DOI: 10.1016/j.msard.2024.105550.
[43]
CAROTENUTO A, CACCIAGUERRA L, PAGANI E, et al. Glymphatic system impairment in multiple sclerosis: relation with brain damage and disability[J]. Brain, 2022, 145(8): 2785-2795. DOI: 10.1093/brain/awab454.

PREV Sex differences in MRI-derived brain networks: linking connectivity to cognitive function and neural mechanisms
NEXT Progress in the application of MRI-based radiomics in esophageal cancer
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn