Share:
Share this content in WeChat
X
Review
Advances in imaging research for prognostic evaluation after hepatocellular carcinoma ablation therapy
HUANG Huiying  ZHANG Yumin  LUO Ningbin 

Cite this article as: HUANG H Y, ZHANG Y M, LUO N B. Advances in imaging research for prognostic evaluation after hepatocellular carcinoma ablation therapy[J]. Chin J Magn Reson Imaging, 2025, 16(9): 209-214, 222. DOI:10.12015/issn.1674-8034.2025.09.032.


[Abstract] Hepatocellular carcinoma (HCC) remains one of the leading causes of cancer-related mortality worldwide and ranks among the most common malignancies in China. Thermal ablation, recommended by clinical guidelines as a curative option for very early-stage HCC, provides comparable survival to surgical resection but is challenged by a high recurrence rate. Accurate and noninvasive evaluation of residual tumor viability and early recurrence is therefore essential for improving patient outcomes. Existing reviews have primarily focused on single imaging modalities, with limited systematic discussion of multimodal imaging and radiomics. This review aims to summarize the advances in imaging-based prognostic evaluation after HCC thermal ablation, covering contrast-enhanced ultrasound, computed tomography (CT) perfusion imaging, MRI functional imaging, and radiomics, deep learning approaches. We compare their strengths and limitations in assessing therapeutic efficacy and recurrence risk, highlight current clinical challenges, and propose future research directions. We argue that the integration of multimodal imaging and radiomics techniques represents a promising strategy to enhance the accuracy of post-ablation evaluation, while large-scale multicenter prospective studies and standardized modeling frameworks are urgently needed to facilitate clinical translation.
[Keywords] hepatocellular carcinoma;thermal ablation;postoperative evaluation;magnetic resonance imaging;radiomics;deep learning

HUANG Huiying   ZHANG Yumin   LUO Ningbin*  

Department of Radiology, Guangxi Medical University Cancer Hospital, Nanning 530021, China

Corresponding author: LUO N B, E-mail: flying047@163.com

Conflicts of interest   None.

Received  2025-06-10
Accepted  2025-09-10
DOI: 10.12015/issn.1674-8034.2025.09.032
Cite this article as: HUANG H Y, ZHANG Y M, LUO N B. Advances in imaging research for prognostic evaluation after hepatocellular carcinoma ablation therapy[J]. Chin J Magn Reson Imaging, 2025, 16(9): 209-214, 222. DOI:10.12015/issn.1674-8034.2025.09.032.

[1]
HWANG S Y, DANPANICHKUL P, AGOPIAN V, et al. Hepatocellular carcinoma: updates on epidemiology, surveillance, diagnosis and treatment[J]. Clin Mol Hepatol, 2025, 31(Suppl): S228-S254. DOI: 10.3350/cmh.2024.0824.
[2]
European Association for the Study of the Liver. EASL Clinical Practice Guidelines on the management of hepatocellular carcinoma[J]. J Hepatol, 2025, 82(2): 315-374. DOI: 10.1016/j.jhep.2024.08.028.
[3]
LLOVET J M, KELLEY R K, VILLANUEVA A, et al. Hepatocellular carcinoma[J/OL]. Nat Rev Dis Primers, 2021, 7: 6 [2025-08-27]. https://pubmed.ncbi.nlm.nih.gov/33479224/. DOI: 10.1038/s41572-020-00240-3.
[4]
GALLE P R, FORNER A, LLOVET J M, et al. EASL Clinical Practice Guidelines: Management of hepatocellular carcinoma[J]. J Hepatol, 2018, 69(1): 182-236. DOI: 10.1016/j.jhep.2018.03.019.
[5]
SIEGEL R L, GIAQUINTO A N, JEMAL A. Cancer statistics, 2024[J]. CA A Cancer J Clinicians, 2024, 74(1): 12-49. DOI: 10.3322/caac.21820.
[6]
Department of Medical Administration of the National Health Commission of the People's Republic of China. Guideline for diagnosis and treatment of primary liver cancer (2024 edition)[J]. Chin J Magn Reson Imaging, 2024, 15(6): 1-18. DOI: 10.12015/issn.1674-8034.2024.06.001.
[7]
SINGAL A G, LLOVET J M, YARCHOAN M, et al. AASLD Practice Guidance on prevention, diagnosis, and treatment of hepatocellular carcinoma[J]. Hepatology, 2023, 78(6): 1922-1965. DOI: 10.1097/HEP.0000000000000466.
[8]
REIG M, FORNER A, RIMOLA J, et al. BCLC strategy for prognosis prediction and treatment recommendation: The 2022 update[J]. J Hepatol, 2022, 76(3): 681-693. DOI: 10.1016/j.jhep.2021.11.018.
[9]
HASEGAWA K, TAKEMURA N, YAMASHITA T, et al. Clinical practice guidelines for hepatocellular carcinoma: the Japan society of hepatology 2021 version (5th JSH-HCC guidelines)[J]. Hepatol Res, 2023, 53(5): 383-390. DOI: 10.1111/hepr.13892.
[10]
LI H, VOGL T J, CHEN K A, et al. A comparison of the efficacy and safety of US-, CT-, and MR-guided radiofrequency and microwave ablation for HCC: a systematic review and network meta-analysis[J/OL]. Cancers (Basel), 2025, 17(3): 409 [2025-08-27]. https://pubmed.ncbi.nlm.nih.gov/39941779/. DOI: 10.3390/cancers17030409.
[11]
SINGAL A G, KANWAL F, LLOVET J M. Global trends in hepatocellular carcinoma epidemiology: implications for screening, prevention and therapy[J]. Nat Rev Clin Oncol, 2023, 20(12): 864-884. DOI: 10.1038/s41571-023-00825-3.
[12]
HERRERO A, TOUBERT C, BEDOYA J U, et al. Management of hepatocellular carcinoma recurrence after liver surgery and thermal ablations: state of the art and future perspectives[J]. Hepatobiliary Surg Nutr, 2024, 13(1): 71-88. DOI: 10.21037/hbsn-22-579.
[13]
NEVOLA R, RUOCCO R, CRISCUOLO L, et al. Predictors of early and late hepatocellular carcinoma recurrence[J]. World J Gastroenterol, 2023, 29(8): 1243-1260. DOI: 10.3748/wjg.v29.i8.1243.
[14]
HAN S, SUNG P S, PARK S Y, et al. Local ablation for hepatocellular carcinoma: 2024 expert consensus-based practical recommendations of the Korean liver cancer association[J]. Korean J Radiol, 2024, 25(9): 773-787. DOI: 10.3348/kjr.2024.0550.
[15]
MARQUEZ H P, PUIPPE G, MATHEW R P, et al. CT perfusion for early response evaluation of radiofrequency ablation of focal liver lesions: first experience[J]. Cardiovasc Intervent Radiol, 2017, 40(1): 90-98. DOI: 10.1007/s00270-016-1444-9.
[16]
XIA Y X, LIN Y Q, WANG H. Progress in monitoring the recurrence of hepatocellular carcinoma after thermal ablation with contrast-enhanced ultrasound[J]. Chin J Lab Diagn, 2025, 29(2): 224-229. DOI: 10.3969/j.issn.1007-4287.2025.02.018.
[17]
ZHANG X J, WANG C D, ZHENG D, et al. Radiomics nomogram based on multi-parametric magnetic resonance imaging for predicting early recurrence in small hepatocellular carcinoma after radiofrequency ablation[J/OL]. Front Oncol, 2022, 12: 1013770 [2025-08-27]. https://pubmed.ncbi.nlm.nih.gov/36439458/. DOI: 10.3389/fonc.2022.1013770.
[18]
HU Y Z, ZHANG L M, ZHANG H Q, et al. Prediction power of radiomics in early recurrence of hepatocellular carcinoma: a systematic review and meta-analysis[J/OL]. Medicine (Baltimore), 2024, 103(27): e38721 [2025-08-27].https://pubmed.ncbi.nlm.nih.gov/38968499/. DOI: 10.1097/MD.0000000000038721.
[19]
ZHU F D, YANG C, ZHAO Z H. Research progress in radiomics evaluation of the efficacy and prognosis of microwave/radiofrequency ablation treatment for tumors[J]. J Interv Radiol, 2024, 33(6): 693-696. DOI: 10.3969/j.issn.1008-794X.2024.06.021.
[20]
LIU L H, ZHOU Z. Advances in radiomics in accurate diagnosis, treatment and prognosis evaluation of hepatocellular carcinoma[J]. Chin J Magn Reson Imag, 2025, 16(1): 216-221, 227. DOI: 10.12015/issn.1674-8034.2025.01.035.
[21]
GU D Y, ZHANG Y, HU J X, et al. The value of contrast-enhanced ultrasound quantitative parameters in the prognosis prediction of hepatocellular carcinoma after thermal ablation: a retrospective cohort study[J]. J Gastrointest Oncol, 2022, 13(5): 2522-2531. DOI: 10.21037/jgo-22-919.
[22]
LI Z N, JIAO D C, SI G Y, et al. Making timely remedial measures after TACE based on the results of cone-beam CT liver perfusion[J]. Int J Hyperth, 2021, 38(1): 428-436. DOI: 10.1080/02656736.2021.1895331.
[23]
YUE X F, DONG X J, HUANG M T, et al. Early assessment of response to radiofrequency ablation with CT perfusion imaging in rabbit VX2 liver tumor model[J/OL]. Front Oncol, 2021, 11: 728781 [2025-08-27]. https://pubmed.ncbi.nlm.nih.gov/34900679/. DOI: 10.3389/fonc.2021.728781.
[24]
KALARAKIS G, CHRYSSOU E G, PERISINAKIS K, et al. CT perfusion and MRI: A combined approach for hepatocellular carcinoma diagnosis and follow-up after locoregional treatment[J/OL]. Eur J Radiol, 2025, 183: 111928 [2025-08-27]. https://pubmed.ncbi.nlm.nih.gov/39855148/. DOI: 10.1016/j.ejrad.2025.111928.
[25]
BAE J S, KIM J H, LEE D H, et al. Hepatobiliary phase of gadoxetic acid-enhanced MRI in patients with HCC: prognostic features before resection, ablation, or TACE[J]. Eur Radiol, 2021, 31(6): 3627-3637. DOI: 10.1007/s00330-020-07499-w.
[26]
ÖCAL O, SCHÜTTE K, MALFERTHEINER P, et al. Prognostic value of baseline MRI features in patients treated with thermal ablation for hepatocellular carcinoma[J/OL]. Eur J Radiol, 2023, 168: 111120 [2025-08-27]. https://pubmed.ncbi.nlm.nih.gov/37806190/. DOI: 10.1016/j.ejrad.2023.111120.
[27]
CHA D I, LEE M W, JEONG W K, et al. Rim-arterial enhancing primary hepatic tumors with other targetoid appearance show early recurrence after radiofrequency ablation[J]. Eur Radiol, 2021, 31(9): 6555-6567. DOI: 10.1007/s00330-021-07769-1.
[28]
XU Q, ZHANG L, HUANG T T, et al. Risk factors for early recurrence of solitary hepatocellular carcinoma after radiofrequency ablation based on Gd-EOB-DTPA-enhanced MRI[J]. Chin J Med Imag, 2025, 33(3): 238-244, 259. DOI: 10.3969/j.issn.1005-5185.2025.03.004.
[29]
SUROV A, EGER K I, POTRATZ J, et al. Apparent diffusion coefficient correlates with different histopathological features in several intrahepatic tumors[J]. Eur Radiol, 2023, 33(9): 5955-5964. DOI: 10.1007/s00330-023-09788-6.
[30]
MEYER H J, LEONHARDI J, POTRATZ J, et al. Association between radiomics of diffusion-weighted imaging and histopathology in hepatocellular carcinoma. A preliminary investigation[J/OL]. Magn Reson Imaging, 2025, 118: 110356 [2025-08-27]. https://pubmed.ncbi.nlm.nih.gov/39938670/. DOI: 10.1016/j.mri.2025.110356.
[31]
SUROV A, PECH M, OMARI J, et al. Diffusion-weighted imaging reflects tumor grading and microvascular invasion in hepatocellular carcinoma[J]. Liver Cancer, 2021, 10(1): 10-24. DOI: 10.1159/000511384.
[32]
YAO S J, QU J Q, CAO Y, et al. The predictive value of MRI combined with serum miR-204 level for the efficacy and recurrence of primary liver cancer after percutaneous radiofrequency ablation[J]. Radiol Pract, 2022, 37(1): 62-67. DOI: 10.13609/j.cnki.1000-0313.2022.01.011.
[33]
LIU T F, ZANG X, LI M, et al. Application of magnetic resonance diffusion-weighted imaging in prognostic evaluation of microwave ablation of hepatocellular carcinoma[J]. Chin J Magn Reson Imag, 2022, 13(6): 112-116. DOI: 10.12015/issn.1674-8034.2022.06.022.
[34]
HU Z C, YU N N, WANG H P, et al. Pre-radiofrequency ablation MRI imaging features predict the local tumor progression in hepatocellular carcinoma[J/OL]. Medicine (Baltimore), 2020, 99(52): e23924 [2025-08-27]. https://pubmed.ncbi.nlm.nih.gov/33350797/. DOI: 10.1097/MD.0000000000023924.
[35]
WEI H, YANG T, CHEN J, et al. Prognostic implications of CT/MRI LI-RADS in hepatocellular carcinoma: state of the art and future directions[J]. Liver Int, 2022, 42(10): 2131-2144. DOI: 10.1111/liv.15362.
[36]
WANG F, YAN C Y, WANG C H, et al. The roles of diffusion kurtosis imaging and intravoxel incoherent motion diffusion-weighted imaging parameters in preoperative evaluation of pathological grades and microvascular invasion in hepatocellular carcinoma[J/OL]. Front Oncol, 2022, 12: 884854 [2025-08-27]. https://pubmed.ncbi.nlm.nih.gov/35646649/. DOI: 10.3389/fonc.2022.884854.
[37]
ZHOU Y, ZHENG J, YANG C, et al. Application of intravoxel incoherent motion diffusion-weighted imaging in hepatocellular carcinoma[J]. World J Gastroenterol, 2022, 28(27): 3334-3345. DOI: 10.3748/wjg.v28.i27.3334.
[38]
WANG X J, ISHIMATSU K, LI J J, et al. APT imaging of hepatocellular carcinoma signals an effective therapeutic response in advance of tumor shrinkage[J/OL]. Hepat Oncol, 2024, 11(1): 2389031 [2025-08-27]. https://pubmed.ncbi.nlm.nih.gov/39881558/. DOI: 10.1080/20450923.2024.2389031.
[39]
QI X H, WANG Q, SHEN Z W, et al. Image quality assessment and feasibility of three-dimensional amide proton transfer-weighted imaging for hepatocellular carcinoma[J]. Quant Imaging Med Surg, 2024, 14(2): 1778-1790. DOI: 10.21037/qims-23-767.
[40]
LIU W, WANG P Y. Functional magnetic resonance imaging in hepatocellular carcinoma[J]. J Med Imag, 2020, 30(2): 327-330. DOI: 1006-9011(2020)02-0327-04.
[41]
MOU Y N, ZHANG J, PANG Y X, et al. Research progress of blood oxygenation level dependent magnetic resonance imaging in assessing tumor hypoxia[J]. Chin J Magn Reson Imag, 2025, 16(7): 215-220, 226. DOI: 10.12015/issn.1674-8034.2025.07.034.
[42]
LI B S, XU A H, HUANG Y R, et al. Oxygen-challenge blood oxygen level-dependent magnetic resonance imaging for evaluation of early change of hepatocellular carcinoma to chemoembolization: a feasibility study[J]. Acad Radiol, 2021, 28(Suppl 1): S13-S19. DOI: 10.1016/j.acra.2020.06.021.
[43]
ZHANG Z H, YU J, LIU S S, et al. Multiparametric liver MRI for predicting early recurrence of hepatocellular carcinoma after microwave ablation[J/OL]. Cancer Imaging, 2022, 22(1): 42 [2025-08-27]. https://pubmed.ncbi.nlm.nih.gov/36042507/. DOI: 10.1186/s40644-022-00471-5.
[44]
KELLER S, CHAPIRO J, BRANGSCH J, et al. Quantitative MRI for assessment of treatment outcomes in a rabbit VX2 hepatic tumor model[J]. J Magn Reson Imaging, 2020, 52(3): 668-685. DOI: 10.1002/jmri.26968.
[45]
ZHONG L H, LIU W G, LI W Z. Advances in the application of magnetic resonance elastography in the diagnosis and treatment of hepatocellular carcinoma[J]. Chin J Magn Reson Imag, 2022, 13(12): 150-153, 158. DOI: 10.12015/issn.1674-8034.2022.12.028.
[46]
HUI R W, CHAN A C, LO G, et al. Magnetic resonance elastography and proton density fat fraction predict adverse outcomes in hepatocellular carcinoma[J]. Hepatol Int, 2022, 16(2): 371-380. DOI: 10.1007/s12072-022-10305-y.
[47]
VOGL T J, DOSCH M P, HAAS Y. MR elastography is a good response parameter for microwave ablation liver tumors[J/OL]. Eur J Radiol, 2022, 152: 110360 [2025-08-27]. https://pubmed.ncbi.nlm.nih.gov/35597071/. DOI: 10.1016/j.ejrad.2022.110360.
[48]
PANG Y X, YIN L, ZHANG J, et al. Research progress in MRI evaluation of the therapeutic effect of ablation in hepatocellular carcinoma[J]. Chin J Magn Reson Imag, 2024, 15(10): 200-204. DOI: 10.12015/issn.1674-8034.2024.10.034.
[49]
KOBE A, KINDLER Y, KLOTZ E, et al. Fusion of preinterventional MR imaging with liver perfusion CT after RFA of hepatocellular carcinoma: early quantitative prediction of local recurrence[J]. Invest Radiol, 2021, 56(3): 188-196. DOI: 10.1097/RLI.0000000000000726.
[50]
BELEÙ A, AUTELITANO D, GERACI L, et al. Radiofrequency ablation of hepatocellular carcinoma: CT texture analysis of the ablated area to predict local recurrence[J/OL]. Eur J Radiol, 2022, 150: 110250 [2025-08-27]. https://pubmed.ncbi.nlm.nih.gov/35367776/. DOI: 10.1016/j.ejrad.2022.110250.
[51]
HORVAT N, DE ARIMATEIA B ARAUJO-FILHO J, ASSUNCAO-JR A N, et al. Radiomic analysis of MRI to predict sustained complete response after radiofrequency ablation in patients with hepatocellular carcinoma - a pilot study[J/OL]. Clinics (Sao Paulo), 2021, 76: e2888 [2025-08-27]. https://pubmed.ncbi.nlm.nih.gov/34287480/. DOI: 10.6061/clinics/2021/e2888.
[52]
PETUKHOVA-GREENSTEIN A, ZEEVI T, YANG J L, et al. MR imaging biomarkers for the prediction of outcome after radiofrequency ablation of hepatocellular carcinoma: qualitative and quantitative assessments of the liver imaging reporting and data system and radiomic features[J/OL]. J Vasc Interv Radiol, 2022, 33(7): 814-824.e3 [2025-08-27]. https://pubmed.ncbi.nlm.nih.gov/35460887/. DOI: 10.1016/j.jvir.2022.04.006.
[53]
MA Q P, HE X L, LI K, et al. Dynamic contrast-enhanced ultrasound radiomics for hepatocellular carcinoma recurrence prediction after thermal ablation[J]. Mol Imaging Biol, 2021, 23(4): 572-585. DOI: 10.1007/s11307-021-01578-0.
[54]
LI J P, ZHAO S, JIANG H J, et al. Quantitative dual-energy computed tomography texture analysis predicts the response of primary small hepatocellular carcinoma to radiofrequency ablation[J]. Hepatobiliary Pancreat Dis Int, 2022, 21(6): 569-576. DOI: 10.1016/j.hbpd.2022.06.003.
[55]
YUAN C W, WANG Z C, GU D S, et al. Prediction early recurrence of hepatocellular carcinoma eligible for curative ablation using a Radiomics nomogram[J/OL]. Cancer Imaging, 2019, 19(1): 21 [2025-08-27]. https://pubmed.ncbi.nlm.nih.gov/31027510/. DOI: 10.1186/s40644-019-0207-7.
[56]
ZHAO L D, WANG J, SONG J N, et al. Combining serum biomarkers and MRI radiomics to predict treatment outcome after thermal ablation in hepatocellular carcinoma[J]. Am J Transl Res, 2025, 17(3): 2031-2043. DOI: 10.62347/TFRF1430.
[57]
ZHANG Y, WEI H, SONG B. Magnetic resonance imaging for treatment response evaluation and prognostication of hepatocellular carcinoma after thermal ablation[J/OL]. Insights Imaging, 2023, 14(1): 87 [2025-08-27]. https://pubmed.ncbi.nlm.nih.gov/37188987/. DOI: 10.1186/s13244-023-01440-7.
[58]
WANG Y D, ZHANG Y, XIAO J C, et al. Multicenter integration of MR radiomics, deep learning, and clinical indicators for predicting hepatocellular carcinoma recurrence after thermal ablation[J]. J Hepatocell Carcinoma, 2024, 11: 1861-1874. DOI: 10.2147/JHC.S482760.
[59]
HUANG W R, PAN Y F, WANG H F, et al. Delta-radiomics analysis based on multi-phase contrast-enhanced MRI to predict early recurrence in hepatocellular carcinoma after percutaneous thermal ablation[J]. Acad Radiol, 2024, 31(12): 4934-4945. DOI: 10.1016/j.acra.2024.06.002.
[60]
KONG Q Y, LI K. Predicting early recurrence of hepatocellular carcinoma after thermal ablation based on longitudinal MRI with a deep learning approach[J/OL]. Oncologist, 2025, 30(3): oyaf013 [2025-08-27]. https://pubmed.ncbi.nlm.nih.gov/40110765/. DOI: 10.1093/oncolo/oyaf013.
[61]
BU D D, DUAN S B, REN S S, et al. Machine learning-based ultrasound radiomics for predicting TP53 mutation status in hepatocellular carcinoma[J/OL]. Front Med (Lausanne), 2025, 12: 1565618 [2025-08-27]. https://pubmed.ncbi.nlm.nih.gov/40357300/. DOI: 10.3389/fmed.2025.1565618.
[62]
WANG W T, WANG Y Y, SONG D J, et al. A Transformer-Based microvascular invasion classifier enhances prognostic stratification in HCC following radiofrequency ablation[J]. Liver Int, 2024, 44(4): 894-906. DOI: 10.1111/liv.15846.
[63]
XIE Y Y, WANG F, WEI J W, et al. Noninvasive prognostic classification of ITH in HCC with multi-omics insights and therapeutic implications[J/OL]. Sci Adv, 2025, 11(18): eads8323 [2025-08-27]. https://pubmed.ncbi.nlm.nih.gov/40315307/. DOI: 10.1126/sciadv.ads8323.
[64]
PENG J, WANG J R, ZHU H B, et al. Three-dimensional multimodal imaging for predicting early recurrence of hepatocellular carcinoma after surgical resection[J/OL]. J Adv Res, 2025 [2025-08-27]. https://pubmed.ncbi.nlm.nih.gov/40533057/. DOI: 10.1016/j.jare.2025.06.031.
[65]
LIM S, SHIN Y, LEE Y H. Arterial enhancing local tumor progression detection on CT images using convolutional neural network after hepatocellular carcinoma ablation: a preliminary study[J/OL]. Sci Rep, 2022, 12(1): 1754 [2025-08-27]. https://pubmed.ncbi.nlm.nih.gov/35110631/. DOI: 10.1038/s41598-022-05794-8.
[66]
GUPTA S, DUBEY A K, SINGH R, et al. Four transformer-based deep learning classifiers embedded with an attention U-net-based lung segmenter and layer-wise relevance propagation-based heatmaps for COVID-19 X-ray scans[J/OL]. Diagnostics (Basel), 2024, 14(14): 1534 [2025-08-27]. https://pubmed.ncbi.nlm.nih.gov/39061671/. DOI: 10.3390/diagnostics14141534.
[67]
LIAO H, ZHAO Y, PEI W, et al. An interpretable machine learning model assists in predicting induction chemotherapy response and survival for locoregionally advanced nasopharyngeal carcinoma using MRI: a multicenter study[J]. Eur Radiol, 2025, 35(8): 5121-5134. DOI: 10.1007/s00330-025-11396-5.

PREV Application of cardiac magnetic resonance in risk stratification and prognostic evaluation of acute myocarditis
NEXT Research advances in radiomics in the biological behavior of hepatocellular carcinoma
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn