Share:
Share this content in WeChat
X
Review
Research progress on magnetic resonance techniques based on conventional sequences, ultra-short echo time sequences, and fat quantification sequences in the diagnosis of osteoporosis
CHENG Zhangkun  ZHANG Tingting 

Cite this article as: CHENG Z K, ZHANG T T. Research progress on magnetic resonance techniques based on conventional sequences, ultra-short echo time sequences, and fat quantification sequences in the diagnosis of osteoporosis[J]. Chin J Magn Reson Imaging, 2025, 16(9): 229-234. DOI:10.12015/issn.1674-8034.2025.09.035.


[Abstract] Osteoporosis (OP) is a metabolic bone disease characterized by reduced bone mass and destruction of bone microstructure, which has a higher incidence among the elderly and a significant increase in the risk of fractures. Traditional bone mineral density (BMD) measurement methods, such as dual-energy X-ray absorptiometry (DXA) is the gold standard for clinical diagnosis of OP, but DXA and quantitative computed tomography (QCT) focus solely on bone mass and ignore the changes in bone microstructure,and have the risk of radiation exposure. MRI technology can non-invasively and multi-dimensionally assess the information of bone quality, bone marrow fat content, and cortical bone porosity, which is helpful for the precise diagnosis and treatment of OP. Existing reviews have summarized the research progress of fat quantification sequences and ultra-short echo time (UTE) sequences in the diagnosis of OP, but have ignored the significance of conventional T1 sequences in the diagnosis of OP and the fusion of multi-modal MRI techniques in the diagnosis of OP and related diseases. This article reviews the application progress and existing limitations of conventional T1 sequence, UTE sequence, and fat quantification sequence in the assessment of OP and related diseases: the vertebral bone quality score (VBQ), which is calculated by comparing the signal ratio of lumbar marrow to cerebrospinal fluid on conventional T1 sequence, is used to evaluate OP and related diseases; the UTE sequence is employed to detect short T2 tissues and quantify parameters such as cortical bone pore water concentration, porosity index (PI), suppression ratio (SR), and collagen-bound water proton density (CBWPD) to assess OP; meanwhile, the fat quantification sequence is utilized to precisely measure bone marrow fat fraction (BMFF) and explore the research progress of its combination with different sequences in diagnosing OP and related diseases. However, these techniques still face challenges in clinical application, such as the lack of standardized standards and standardized scanning protocols. In the future, it is necessary to construct a multimodal MRI system that integrates T1 sequence, UTE, and fat quantification, and address key issues such as parameter standardization to promote clinical precision diagnosis and treatment.
[Keywords] osteoporosis;magnetic resonance imaging;bone mineral density;vertebral bone quality score;ultra short echo time;fat quantification

CHENG Zhangkun1, 2   ZHANG Tingting1, 2*  

1 The First College of Clinical Medical Science, China Three Gorges University, Yichang 443000, China

2 Department of Radiology, Yichang Central People's Hospital, Yichang 443000, China

Corresponding author: ZHANG T T, E-mail: tiana0916@sina.com

Conflicts of interest   None.

Received  2025-05-26
Accepted  2025-09-10
DOI: 10.12015/issn.1674-8034.2025.09.035
Cite this article as: CHENG Z K, ZHANG T T. Research progress on magnetic resonance techniques based on conventional sequences, ultra-short echo time sequences, and fat quantification sequences in the diagnosis of osteoporosis[J]. Chin J Magn Reson Imaging, 2025, 16(9): 229-234. DOI:10.12015/issn.1674-8034.2025.09.035.

[1]
AYERS C, KANSAGARA D, LAZUR B, et al. Effectiveness and safety of treatments to prevent fractures in people with low bone mass or primary osteoporosis: a living systematic review and network meta-analysis for the American college of physicians[J]. Ann Intern Med, 2023, 176(2): 182-195. DOI: 10.7326/M22-0684.
[2]
FISCHER V, HAFFNER-LUNTZER M. Interaction between bone and immune cells: implications for postmenopausal osteoporosis[J]. Semin Cell Dev Biol, 2022, 123: 14-21. DOI: 10.1016/j.semcdb.2021.05.014.
[3]
JOHNSTON C B, DAGAR M. Osteoporosis in older adults[J]. Med Clin N Am, 2020, 104(5): 873-884. DOI: 10.1016/j.mcna.2020.06.004.
[4]
ACOG Committee on Clinical Practice Guidelines-Gynecology. Management of postmenopausal osteoporosis: ACOG clinical practice guideline No. 2[J]. Obstet Gynecol, 2022, 139(4): 698-717. DOI: 10.1097/AOG.0000000000004730.
[5]
VILACA T, EASTELL R, SCHINI M. Osteoporosis in men[J]. Lancet Diabetes Endocrinol, 2022, 10(4): 273-283. DOI: 10.1016/S2213-8587(22)00012-2.
[6]
YIN H J, LIN W T, XIE F Q, et al. MRI-based vertebral bone quality score for osteoporosis screening based on different osteoporotic diagnostic criteria using DXA and QCT[J]. Calcif Tissue Int, 2023, 113(4): 383-392. DOI: 10.1007/s00223-023-01115-x.
[7]
YONG E L, LOGAN S. Menopausal osteoporosis: screening, prevention and treatment[J]. Singapore Med J, 2021, 62(4): 159-166. DOI: 10.11622/smedj.2021036.
[8]
ZAMAN M U, FATIMA N. Dual energy X-ray absorptiometry (DXA) in the management of osteoporosis[J]. J Coll Physicians Surg Pak, 2024, 34(6): 633-635. DOI: 10.29271/jcpsp.2024.06.633.
[9]
SLART R H J A, PUNDA M, ALI D S, et al. Updated practice guideline for dual-energy X-ray absorptiometry (DXA)[J]. Eur J Nucl Med Mol Imaging, 2025, 52(2): 539-563. DOI: 10.1007/s00259-024-06912-6.
[10]
SALZMANN S N, OKANO I, JONES C, et al. Preoperative MRI-based vertebral bone quality (VBQ) score assessment in patients undergoing lumbar spinal fusion[J]. Spine J, 2022, 22(8): 1301-1308. DOI: 10.1016/j.spinee.2022.03.006.
[11]
SHEVROJA E, REGINSTER J Y, LAMY O, et al. Update on the clinical use of trabecular bone score (TBS) in the management of osteoporosis: results of an expert group meeting organized by the European Society for Clinical and Economic Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases (ESCEO), and the International Osteoporosis Foundation (IOF) under the auspices of WHO Collaborating Center for Epidemiology of Musculoskeletal Health and Aging[J]. Osteoporos Int, 2023, 34(9): 1501-1529. DOI: 10.1007/s00198-023-06817-4.
[12]
ENGELKE K, LANG T, KHOSLA S, et al. Clinical use of quantitative computed tomography-based advanced techniques in the management of osteoporosis in adults: the 2015 ISCD official positions-part III[J]. J Clin Densitom, 2015, 18(3): 393-407. DOI: 10.1016/j.jocd.2015.06.010.
[13]
ÖZMEN E, BIÇER O, MERIÇ E, et al. Vertebral bone quality score for opportunistic osteoporosis screening: a correlation and optimal threshold analysis[J]. Eur Spine J, 2023, 32(11): 3906-3911. DOI: 10.1007/s00586-023-07912-0.
[14]
BRISTOW S M, GAMBLE G D, HORNE A M, et al. Longitudinal changes in bone mineral density, bone mineral content and bone area at the lumbar spine and hip in postmenopausal women, and the influence of abdominal aortic calcification[J/OL]. Bone Rep, 2018, 10: 100190 [2025-08-26]. https://pubmed.ncbi.nlm.nih.gov/30766896/. DOI: 10.1016/j.bonr.2018.100190.
[15]
PAGGIOSI M A, DEBONO M, WALSH J S, et al. Quantitative computed tomography discriminates between postmenopausal women with low spine bone mineral density with vertebral fractures and those with low spine bone mineral density only: the SHATTER study[J]. Osteoporos Int, 2020, 31(4): 667-675. DOI: 10.1007/s00198-020-05317-z.
[16]
XIA N, LIAO D F, LI X W, et al. Advances in research on application of quantitative CT in clinical diagnosis and treatment of osteoporosis[J]. Zhongguo Yi Xue Ke Xue Yuan Xue Bao, 2025, 47(1): 118-123. DOI: 10.3881/j.issn.1000-503X.16035.
[17]
EHRESMAN J, SCHILLING A, YANG X H, et al. Vertebral bone quality score predicts fragility fractures independently of bone mineral density[J]. Spine J, 2021, 21(1): 20-27. DOI: 10.1016/j.spinee.2020.05.540.
[18]
AYNASZYAN S, DEVIA L G, UDOEYO I F, et al. Patient physiology influences the MRI-based vertebral bone quality score[J]. Spine J, 2022, 22(11): 1866-1874. DOI: 10.1016/j.spinee.2022.06.003.
[19]
NAJAFI A, BAGHERI A B, HADAVI D, et al. Vertebral bone quality score as a new tool for osteoporosis diagnosis in patients undergoing lumbosacral fusion surgery: a single center cohort study[J/OL]. Eur J Transl Myol, 2024, 34(4): 12311 [2025-08-26]. https://pubmed.ncbi.nlm.nih.gov/39283159/. DOI: 10.4081/ejtm.2024.12311.
[20]
ROCH P J, ÇELIK B, JÄCKLE K, et al. Combination of vertebral bone quality scores from different magnetic resonance imaging sequences improves prognostic value for the estimation of osteoporosis[J]. Spine J, 2023, 23(2): 305-311. DOI: 10.1016/j.spinee.2022.10.013.
[21]
WANG S, ZHANG X, QU B, et al. A novel MRI-based paravertebral muscle quality (PVMQ) score for evaluating muscle quality and bone quality: a comparative study with the VBQ score[J]. Clin Interv Aging, 2024, 19: 1203-1215. DOI: 10.2147/CIA.S464187.
[22]
LI R Y, YIN Y J, JI W, et al. MRI-based vertebral bone quality score effectively reflects bone quality in patients with osteoporotic vertebral compressive fractures[J]. Eur Spine J, 2022, 31(5): 1131-1137. DOI: 10.1007/s00586-022-07177-z.
[23]
WANG S, LIU L, LIU H, et al. Comprehensive diagnostic value of vertebral bone quality scores and paravertebral muscle quality parameters in osteoporotic vertebral fractures[J/OL]. World Neurosurg, 2025, 194: 123503 [2025-08-21]. https://pubmed.ncbi.nlm.nih.gov/39603452/. DOI: 10.1016/j.wneu.2024.11.086.
[24]
CAI J H, HAN W, YANG T Q, et al. MRI-based vertebral bone quality score can predict the imminent new vertebral fracture after vertebral augmentation[J]. Neurosurgery, 2024, 95(3): 566-575. DOI: 10.1227/neu.0000000000002901.
[25]
WU Z Z, ZAYLOR W, SOMMER S, et al. Assessment of ultrashort echo time (UTE) T2* mapping at 3T for the whole knee: repeatability, the effects of fat suppression, and knee position[J]. Quant Imaging Med Surg, 2023, 13(12): 7893-7909. DOI: 10.21037/qims-23-459.
[26]
CHENG K Y, MOAZAMIAN D, NAMIRANIAN B, et al. Estimation of trabecular bone volume with dual-echo ultrashort echo time (UTE) magnetic resonance imaging (MRI) significantly correlates with high-resolution computed tomography (CT)[J/OL]. J Imaging, 2025, 11(2): 57 [2025-08-20]. https://pubmed.ncbi.nlm.nih.gov/39997559/. DOI: 10.3390/jimaging11020057.
[27]
JONES B C, LEE H, CHENG C C, et al. MRI quantification of cortical bone porosity, mineralization, and morphologic structure in postmenopausal osteoporosis[J/OL]. Radiology, 2023, 307(2): e221810 [2025-08-25]. https://pubmed.ncbi.nlm.nih.gov/36692396/. DOI: 10.1148/radiol.221810.
[28]
HARKINS K D, KETSIRI T, NYMAN J S, et al. Fast bound and pore water mapping of cortical bone with arbitrary slice oriented two-dimensional ultra-short echo time[J]. Magn Reson Med, 2023, 89(2): 767-773. DOI: 10.1002/mrm.29484.
[29]
JERBAN S, MA Y J, WEI Z, et al. Ultrashort echo time MRI detects significantly lower collagen but higher pore water in the tibial cortex of female patients with osteopenia and osteoporosis[J]. J Bone Miner Res, 2024, 39(6): 707-716. DOI: 10.1093/jbmr/zjae053.
[30]
ZHAO X, SONG H K, WEHRLI F W. In vivo bone 31P relaxation times and their implications on mineral quantification[J]. Magn Reson Med, 2018, 80(6): 2514-2524. DOI: 10.1002/mrm.27230.
[31]
JERBAN S, MA Y J, MOAZAMIAN D, et al. MRI-based porosity index (PI) and suppression ratio (SR) in the tibial cortex show significant differences between normal, osteopenic, and osteoporotic female subjects[J/OL]. Front Endocrinol (Lausanne), 2023, 14: 1148345 [2024-12-06]. https://pubmed.ncbi.nlm.nih.gov/37025410/. DOI: 10.3389/fendo.2023.1148345.
[32]
MA Y J, JERBAN S, JANG H, et al. Quantitative ultrashort echo time (UTE) magnetic resonance imaging of bone: an update[J/OL]. Front Endocrinol (Lausanne), 2020, 11: 567417 [2024-11-08]. https://pubmed.ncbi.nlm.nih.gov/33071975/. DOI: 10.3389/fendo.2020.567417.
[33]
XIONG Y, HE T X, WANG Y N, et al. CKD stages, bone metabolism markers, and cortical porosity index: associations and mediation effects analysis[J/OL]. Front Endocrinol (Lausanne), 2021, 12: 775066 [2024-11-09]. https://pubmed.ncbi.nlm.nih.gov/34803931/. DOI: 10.3389/fendo.2021.775066.
[34]
JONES B C, WEHRLI F W, KAMONA N, et al. Automated, calibration-free quantification of cortical bone porosity and geometry in postmenopausal osteoporosis from ultrashort echo time MRI and deep learning[J/OL]. Bone, 2023, 171: 116743 [2025-07-06]. https://pubmed.ncbi.nlm.nih.gov/36958542/. DOI: 10.1016/j.bone.2023.116743.
[35]
LIU J, LIAO J W, LI W, et al. Assessment of osteoporosis in lumbar spine: in vivo quantitative MR imaging of collagen bound water in trabecular bone[J/OL]. Front Endocrinol (Lausanne), 2022, 13: 801930 [2025-04-02]. https://pubmed.ncbi.nlm.nih.gov/35250862/. DOI: 10.3389/fendo.2022.801930.
[36]
WOODS G N, EWING S K, SIGURDSSON S, et al. Greater bone marrow adiposity predicts bone loss in older women[J]. J Bone Miner Res, 2020, 35(2): 326-332. DOI: 10.1002/jbmr.3895.
[37]
NIU H F, ZHOU M F, XU X Y, et al. Bone marrow adipose tissue as a critical regulator of postmenopausal osteoporosis - a concise review[J]. Clin Interv Aging, 2024, 19: 1259-1272. DOI: 10.2147/CIA.S466446.
[38]
BADR S, COTTEN A, MENTAVERRI R, et al. Relationship between bone marrow adipose tissue and kidney function in postmenopausal women[J/OL]. Bone Rep, 2023, 19: 101713 [2025-03-21]. https://pubmed.ncbi.nlm.nih.gov/37711545/. DOI: 10.1016/j.bonr.2023.101713.
[39]
GAO L, MIAO M, ZHANG W, et al. R2* and PDFF quantification: evaluation of lumbar spine bone marrow iron deposition, fat content and diagnostic value of osteoporosis in middle-aged and elderly women[J]. Chin J Magn Reson Imag, 2025, 16(3): 90-95. DOI: 10.12015/issn.1674-8034.2025.03.014.
[40]
OK C Y, KWON R J, JANG H O, et al. Visfatin enhances RANKL-induced osteoclastogenesis in vitro: synergistic interactions and its role as a mediator in osteoclast differentiation and activation[J/OL]. Biomolecules, 2024, 14(12): 1500 [2025-02-21]. https://pubmed.ncbi.nlm.nih.gov/39766208/. DOI: 10.3390/biom14121500.
[41]
XU Z H, XIONG C W, MIAO K S, et al. Adipokines regulate mesenchymal stem cell osteogenic differentiation[J]. World J Stem Cells, 2023, 15(6): 502-513. DOI: 10.4252/wjsc.v15.i6.502.
[42]
BAO J F, LI Z Y, ZHANG Y, et al. Low unsaturated fatty acids level in the vertebral bone marrow of postmenopausal osteoporosis: A pilot 2D iDQC-MRS on 3.0 T study[J]. J Magn Reson Imaging, 2023, 57(5): 1423-1430. DOI: 10.1002/jmri.28383.
[43]
MISAKA T, HASHIMOTO Y, ASHIKAGA R, et al. Chemical shift-encoded MRI with compressed sensing combined with parallel imaging for proton density fat fraction measurement of the lumbar vertebral bone marrow[J/OL]. Medicine (Baltimore), 2024, 103(15): e37748 [2025-01-16]. https://pubmed.ncbi.nlm.nih.gov/38608106/. DOI: 10.1097/MD.0000000000037748.
[44]
ZHOU F, SHENG B, LV F R. Quantitative analysis of vertebral fat fraction and R2* in osteoporosis using IDEAL-IQ sequence[J/OL]. BMC Musculoskelet Disord, 2023, 24(1): 721 [2024-04-17]. https://pubmed.ncbi.nlm.nih.gov/37697287/. DOI: 10.1186/s12891-023-06846-4.
[45]
CHENG D L, FENG H M, WEN G, et al. Value of MR IDEAL-IQ sequence in evaluating the severity of lumbar osteoporosis[J]. Chin J CT MRI, 2023, 21(5): 157-159. DOI: 10.3969/j.issn.1672-5131.2023.05.054.
[46]
LI X W, XIE Y X, LU R, et al. Q-Dixon and GRAPPATINI T2 mapping parameters: a whole spinal assessment of the relationship between osteoporosis and intervertebral disc degeneration[J]. J Magn Reson Imaging, 2022, 55(5): 1536-1546. DOI: 10.1002/jmri.27959.
[47]
LI X W, HU Y W, XIE Y X, et al. T2*-corrected Q-Dixon and reduced-FOV diffusion kurtosis imaging (DKI) parameters: correlation with QCT-derived bone mineral density (BMD) and ability to identify abnormal BMD and osteoporosis in postmenopausal women[J]. Quant Imaging Med Surg, 2023, 13(7): 4130-4146. DOI: 10.21037/qims-22-1247.
[48]
BORELLI C, VERGARA D, GUGLIELMI R, et al. Assessment of bone marrow fat by 3-Tesla magnetic resonance spectroscopy in patients with chronic kidney disease[J]. Quant Imaging Med Surg, 2023, 13(11): 7432-7443. DOI: 10.21037/qims-23-530.
[49]
ISMAIL U N, AZLAN C A, KHAIRULLAH S, et al. Marrow fat content and composition in β-thalassemia: a study using 1 H-MRS[J]. J Magn Reson Imaging, 2021, 53(1): 190-198. DOI: 10.1002/jmri.27294.
[50]
WOODS G N, EWING S K, SCHAFER A L, et al. Saturated and unsaturated bone marrow lipids have distinct effects on bone density and fracture risk in older adults[J]. J Bone Miner Res, 2022, 37(4): 700-710. DOI: 10.1002/jbmr.4504.

PREV Advances in deep learning and radiomics on ovarian cancer
NEXT Effects of point application combined with ear point pressing on brain spontaneous activity in benign paroxysmal positional vertigo with residual dizziness: A randomized controlled functional magnetic resonance imaging study
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn