Share:
Share this content in WeChat
X
Clinical Article
Effects of acupuncture at the Si Guan points on functional connectivity of hippocampal subregions in patients with Alzheimer's disease
FAN Lihua  TIAN Xin  CHEN Yuanyuan  WEI Wei  WANG Zhiqun  WANG Junkai  ZHOU Feng  ZHENG Yunsong 

Cite this article as: FAN L H, TIAN X, CHEN Y Y, et al. Effects of acupuncture at the Si Guan points on functional connectivity of hippocampal subregions in patients with Alzheimer's disease[J]. Chin J Magn Reson Imaging, 2025, 16(10): 7-13. DOI:10.12015/issn.1674-8034.2025.10.002.


[Abstract] Objective To assess the sustained effect of acupuncture at the Si Guan points on functional connectivity of hippocampal subregions in patients with Alzheimer's disease (AD) and normal controls (NC).Materials and Methods Demographic data, neuropsychological assessments, and resting-state functional magnetic resonance imaging (fMRI) data were collected from 14 AD patients and 14 NCs matched by age, sex, and educational level at baseline. After the baseline MRI scan, acupuncture stimulation on the Si Guan points was performed for 3 minutes. Then, another 10 minutes of fMRI data were acquired after the needle was withdrawn. A dataset that included 100 healthy participants was also included to construct a reliable functional connectivity map of the hippocampal subregions. Regions of interest (ROIs) in the bilateral anterior hippocampus (aHPC) and posterior hippocampus (pHPC) were selected to assess the sustained effect of acupuncture on functional connectivity of hippocampal subregions in AD patients and NCs.Results Resting-state functional connectivity analysis demonstrated that multiple brain regions, including the orbitofrontal cortex (OFC), parahippocampal gyrus (PHG), superior temporal gyrus (STG) and insula, showed increased functional connectivity with the hippocampal subregions in the AD group (all P < 0.05) and decreased functional connectivity with the hippocampal subregions in the NC group after acupuncture compared to that at baseline (all P < 0.05). However, superior frontal gyrus (SFG) showed decreased functional connectivity with the hippocampal subregions in the AD group (P < 0.05) and increased functional connectivity with the hippocampal subregions in the NC group (P < 0.01) after acupuncture compared to that at baseline. Acupuncture also specifically elicited increased functional connectivity between the aHPC and the medial frontal cortex (P < 0.01) as well as decreased functional connectivity between the pHPC and the PHG (P < 0.05) in the NC group. Additionally, functional connectivity between the aHPC and the OFC was positively correlated with neuropsychological scale scores in the AD group before acupuncture treatment (r = 0.70, P = 0.016).Conclusions These findings confirm and extend previous studies suggesting that acupuncture at Si Guan points can exert bidirectional and benign regulatory effects on functional connectivity of hippocampal subregions in AD patients.
[Keywords] Alzheimer's disease;resting-state functional magnetic resonance imaging;magnetic resonance imaging;acupuncture;hippocampal subfields

FAN Lihua1   TIAN Xin1   CHEN Yuanyuan1   WEI Wei1   WANG Zhiqun2   WANG Junkai2   ZHOU Feng3   ZHENG Yunsong1, 4*  

1 Department of Medical Imaging, Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, Xianyang 712000, China

2 Department of Imaging, Aerospace Center Hospital, Beijing 100049, China

3 Department of Scientific Research, Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, Xianyang 712000, China

4 School of Medical Technology, Shaanxi University of Traditional Chinese Medicine, Xianyang 712046, China

Corresponding author: ZHENG Y S, E-mail: 576753017@qq.com

Conflicts of interest   None.

Received  2025-04-29
Accepted  2025-10-09
DOI: 10.12015/issn.1674-8034.2025.10.002
Cite this article as: FAN L H, TIAN X, CHEN Y Y, et al. Effects of acupuncture at the Si Guan points on functional connectivity of hippocampal subregions in patients with Alzheimer's disease[J]. Chin J Magn Reson Imaging, 2025, 16(10): 7-13. DOI:10.12015/issn.1674-8034.2025.10.002.

[1]
KIM S, ADAMS J N, CHAPPEL-FARLEY M G, et al. Examining the diagnostic value of the mnemonic discrimination task for classification of cognitive status and amyloid-beta burden[J/OL]. Neuropsychologia, 2023, 191: 108727 [2025-04-29]. https://pubmed.ncbi.nlm.nih.gov/37939874/. DOI: 10.1016/j.neuropsychologia.2023.108727.
[2]
ZHANG F, ZHANG W. Research progress in Alzheimer's disease and bone-brain axis[J/OL]. Ageing Res Rev, 2024, 98: 102341 [2025-04-15]. https://pubmed.ncbi.nlm.nih.gov/38759893/. DOI: 10.1016/j.arr.2024.102341.
[3]
ROSTAGNO A A. Pathogenesis of Alzheimer's Disease[J/OL]. Int J Mol Sci, 2022, 24(1): 107 [2025-04-15]. https://pubmed.ncbi.nlm.nih.gov/36613544/. DOI: 10.3390/ijms24010107.
[4]
LIVINGSTON G, HUNTLEY J, SOMMERLAD A, et al. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission[J]. Lancet, 2020, 396(10248): 413-446. DOI: 10.1016/S0140-6736(20)30367-6.
[5]
WANG M, DINARVAND D, CHAN C T Y, et al. Photobiomodulation as a Potential Treatment for Alzheimer's Disease: A Review Paper[J/OL]. Brain Sci, 2024, 14(11): 1064 [2025-04-15]. https://pubmed.ncbi.nlm.nih.gov/39595827/. DOI: 10.3390/brainsci14111064.
[6]
RAJENDRAN K, KRISHNAN U M. Mechanistic insights and emerging therapeutic stratagems for Alzheimer's disease[J/OL]. Ageing Res Rev, 2024, 97: 102309 [2025-04-15]. https://pubmed.ncbi.nlm.nih.gov/38615895/. DOI: 10.1016/j.arr.2024.102309.
[7]
JIANG Y H, HE J K, LI R, et al. Mechanisms of Acupuncture in Improving Alzheimer's Disease Caused by Mitochondrial Damage[J]. Chin J Integr Med, 2022, 28(3): 272-280. DOI: 10.1007/s11655-022-3511-6.
[8]
ZHOU X, XIANG K, YUAN X, et al. A comparison of the effects of acupoint injection combined with hyaluronic acid versus isolated hyaluronic acid for knee osteoarthritis: A protocol for systematic review and meta-analysis of randomized controlled trials[J/OL]. Medicine (Baltimore), 2020, 99(47): e23262 [2025-04-15]. https://pubmed.ncbi.nlm.nih.gov/33217849/. DOI: 10.1097/MD.0000000000023262.
[9]
JI S, ZHANG H, QIN W, et al. Effect of Acupuncture Stimulation of Hegu (LI4) and Taichong (LR3) on the Resting-State Networks in Alzheimer's Disease: Beyond the Default Mode Network[J/OL]. Neural Plast, 2021, 2021: 8876873 [2025-04-15]. https://pubmed.ncbi.nlm.nih.gov/33747074/. DOI: 10.1155/2021/8876873.
[10]
ZHU X W, LIU M H, ZONG M R, et al. Effect of three tongue needles acupoints Lianquan (CV23) and Hegu (LI4) combined with swallowing training on the quality of life of laryngeal cancer patients with dysphagia after surgery[J]. J Tradit Chin Med, 2022, 42(4): 617-621. DOI: 10.19852/j.cnki.jtcm.20220516.004.
[11]
WANG J, BAI X, CHEN X, et al. Effects of acupuncture at the Taichong (LIV3) and Hegu (LI4) points on functional connectivity with the retrosplenial cortex in patients with Alzheimer's disease[J/OL]. Front Neurosci, 2025, 18: 1511183 [2025-04-15]. https://pubmed.ncbi.nlm.nih.gov/39877657/. DOI: 10.3389/fnins.2024.1511183.
[12]
UMEMOTO K, NAITO M, TANO K, et al. Comment on "Acupuncture Point "Hegu" (LI4) is Close to the Vascular Branch from the Superficial Branch of the Radial Nerve"[J/OL]. Evid Based Complement Alternat Med, 2021, 2021: 9857079 [2025-04-15]. https://pubmed.ncbi.nlm.nih.gov/34970328/. DOI: 10.1155/2021/9857079.
[13]
YANG K, ZHANG P, LV T, et al. Acupuncture at Taichong and Zusanli points exerts hypotensive effect in spontaneously hypertensive rats by metabolomic analysis[J/OL]. J Chromatogr B Analyt Technol Biomed Life Sci, 2022, 1207: 123352 [2025-04-15]. https://pubmed.ncbi.nlm.nih.gov/35841734/. DOI: 10.1016/j.jchromb.2022.123352.
[14]
YE Y J, WEI Y T, JIA J, et al. Efficacy of needling Baihui (GV20), Neiguan (PC6), Shenmen (HT7) and Taichong (LR3) on cerebral cortical blood oxygen level in rats with insomnia[J]. J Tradit Chin Med, 2023, 43(3): 523-532. DOI: 10.19852/j.cnki.jtcm.20230404.005.
[15]
LI Z, LI L, XU H, et al. Modulating Gut Microbiota: The Mechanism of Electroacupuncture at the "Siguan" Acupoints in Alleviating Post-Stroke Depression[J]. Neuropsychiatr Dis Treat, 2025, 21(4): 281-294. DOI: 10.2147/NDT.S495460.
[16]
ZHANG Y, XU H, WU Y, et al. Treatment of subclinical varicocele with acupuncture: A case report[J]. Explore (NY), 2022, 18(5): 604-607. DOI: 10.1016/j.explore.2021.07.001.
[17]
JIN Y J, GE G L. Acupoint thread-embedding for children with tic disorders of spleen deficiency and liver hyperactivity and its effect on serum level of NSE[J]. Zhongguo Zhen Jiu, 2023, 43(11): 1261-1265. DOI: 10.13703/j.0255-2930.20230129-k0004.
[18]
YIN W, LV G, LI C, et al. Acupuncture therapy for Alzheimer's disease: The effectiveness and potential mechanisms[J]. Anat Rec (Hoboken), 2021, 304(11): 2397-2411. DOI: 10.1002/ar.24780.
[19]
HUANG X, XIE J, YANG Y, et al. Brain network mechanism of acupuncture for chronic spontaneous urticaria: a functional magnetic resonance imaging study protocol[J/OL]. Front Neurol, 2023, 14: 1263753 [2025-04-15]. https://pubmed.ncbi.nlm.nih.gov/37920832/. DOI: 10.3389/fneur.2023.1263753.
[20]
RUGGIERO R N, ROSSIGNOLI M T, MARQUES D B, et al. Neuromodulation of Hippocampal-Prefrontal Cortical Synaptic Plasticity and Functional Connectivity: Implications for Neuropsychiatric Disorders[J/OL]. Front Cell Neurosci, 2021, 15: 732360 [2025-04-15]. https://pubmed.ncbi.nlm.nih.gov/34707481/. DOI: 10.3389/fncel.2021.732360.
[21]
CHAUVEAU L, KUHN E, PALIX C, et al. Medial Temporal Lobe Subregional Atrophy in Aging and Alzheimer's Disease: A Longitudinal Study[J/OL]. Front Aging Neurosci, 2021, 13: 750154 [2025-04-15]. https://pubmed.ncbi.nlm.nih.gov/34720998/. DOI: 10.3389/fnagi.2021.750154.
[22]
WANG Q, ZHANG H, WEE C Y, et al. Maternal sensitivity predicts anterior hippocampal functional networks in early childhood[J]. Brain Struct Funct, 2019, 224(5): 1885-1895. DOI: 10.1007/s00429-019-01882-0.
[23]
THERRIAULT J, WANG S, MATHOTAARACHCHI S, et al. Rostral-caudal hippocampal functional convergence is reduced across the Alzheimer's disease spectrum[J]. Mol Neurobiol, 2019, 56(12): 8336-8344. DOI: 10.1007/s12035-019-01671-0.
[24]
DE FLORES R, MUTLU J, BEJANIN A, et al. Intrinsic connectivity of hippocampal subfields in normal elderly and mild cognitive impairment patients[J]. Hum Brain Mapp, 2017, 38(10): 4922-4932. DOI: 10.1002/hbm.23704.
[25]
ZIONTZ J, ADAMS J N, HARRISON T M, et al. Hippocampal connectivity with retrosplenial cortex is linked to neocortical tau accumulation and memory function[J]. J Neurosci, 2021, 41(42): 8839-8847. DOI: 10.1523/JNEUROSCI.0990-21.2021.
[26]
YIN Z, WANG Z, LI Y, et al. Neuroimaging studies of acupuncture on Alzheimer's disease: a systematic review[J/OL]. BMC Complement Med Ther, 2023, 23(1): 63 [2025-04-15]. https://pubmed.ncbi.nlm.nih.gov/36823586/. DOI: 10.1186/s12906-023-03888-y.
[27]
JACK C R, ANDREWS J S, BEACH T G, et al. Revised criteria for diagnosis and staging of Alzheimer's disease: Alzheimer's Association Workgroup[J]. Alzheimers Dement, 2024, 20(8): 5143-5169. DOI: 10.1002/alz.13859.
[28]
JIA J, ZHANGg Y, SHI Y, et al. A 19-Year-Old Adolescent with Probable Alzheimer's Disease[J]. J Alzheimers Dis, 2023, 91(3): 915-922. DOI: 10.3233/JAD-221065.
[29]
WHITFIELD GABRIELIS, NIETO CASTANONA. Conn: a functional connectivity toolbox for correlated and anticorrelated brain networks[J]. Brain Connect, 2012, 2(3): 125-141. DOI: 10.1089/brain.2012.0073.
[30]
FAN L, LI H, ZHUO J, et al. The Human brainnetome atlas: a new brain atlas based on connectional architecture[J]. Cereb Cortex, 2016, 26(8): 3508-3526. DOI: 10.1093/cercor/bhw157.
[31]
CUI J, SONG W, JIN Y, et al. Research progress on the mechanism of the acupuncture regulating neuro-endocrine-immune network system[J/OL]. Vet Sci, 2021, 8(8): 149 [2025-04-15]. https://pubmed.ncbi.nlm.nih.gov/34437474/. DOI: 10.3390/vetsci8080149.
[32]
DU K, YANG S, WANG J, et al. Acupuncture interventions for Alzheimer's disease and vascular cognitive disorders: A review of mechanisms[J/OL]. Oxid Med Cell Longev, 2022, 2022: 6080282 [2025-04-15]. https://pubmed.ncbi.nlm.nih.gov/36211826/. DOI: 10.1155/2022/6080282.
[33]
COHEN A D, BRUNA R, CHANG Y F, et al. Connectomics in Brain Aging and Dementia - The Background and Design of a Study of a Connectome Related to Human Disease[J/OL]. Front Aging Neurosci, 2021, 13: 669490 [2025-04-15]. https://pubmed.ncbi.nlm.nih.gov/34690734/. DOI: 10.3389/fnagi.2021.669490.
[34]
CAI R L, SHEN G M, WANG H, et al. Brain functional connectivity network studies of acupuncture: a systematic review on resting-state fMRI[J]. J Integr Med, 2018, 16(1): 26-33. DOI: 10.1016/j.joim.2017.12.002.
[35]
KRAGEL P A, KAO M, VAN OUDENHOVE L, et al. Generalizable representations of pain, cognitive control, and negative emotion in medial frontal cortex[J]. Nat Neurosci, 2018, 21(2): 283-289. DOI: 10.1038/s41593-017-0051-7.
[36]
JIA J X, YAN X S, SONG W, et al. The protective mechanism underlying phenylethanoid glycosides (PHG) actions on synaptic plasticity in rat Alzheimer's disease model induced by beta amyloid 1-42[J]. J Toxicol Environ Health A, 2018, 81(21): 1098-1107. DOI: 10.1080/15287394.2018.1501861.

PREV Effects of point application combined with ear point pressing on brain spontaneous activity in benign paroxysmal positional vertigo with residual dizziness: A randomized controlled functional magnetic resonance imaging study
NEXT Altered spontaneous brain activity in patients with borderline personality disorder: An activation likelihood estimation Meta-analysis of resting-state fMRI studies
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn