Share:
Share this content in WeChat
X
Clinical Article
Altered spontaneous brain activity in patients with borderline personality disorder: An activation likelihood estimation Meta-analysis of resting-state fMRI studies
SHU Yanping  ZHANG Qin  HOU Yongzhe  LI Da 

Cite this article as: SHU Y P, ZHANG Q, HOU Y Z, et al. Altered spontaneous brain activity in patients with borderline personality disorder: An activation likelihood estimation Meta-analysis of resting-state fMRI studies[J]. Chin J Magn Reson Imaging, 2025, 16(10): 14-20. DOI:10.12015/issn.1674-8034.2025.10.003.


[Abstract] Objective To investigate consistent alterations in spontaneous brain activity in patients with borderline personality disorder (BPD) using resting-state functional magnetic resonance imaging (rs-fMRI), in order to further explore the potential neurobiological mechanisms underlying BPD.Materials and Methods Relevant literature published before May 8, 2025, was systematically searched using amplitude of low-frequency fluctuation/fractional ALFF (ALFF/fALFF) and regional homogeneity (ReHo) analytical methods to assess changes in resting-state brain function in BPD patients. Based on strict inclusion and exclusion criteria, the activation likelihood estimation (ALE) method was used to integrate and analyze brain regions exhibiting aberrant spontaneous neural activity in BPD patients compared to healthy controls (HCs), using GingerALE 3.0.2 software.Results A total of six studies met the inclusion criteria, involving 293 BPD patients and 197 HCs. By combining ALFF/fALFF and ReHo data, the results showed significantly increased spontaneous activity in the left lentiform nucleus, left parahippocampal gyrus, and bilateral cuneus in BPD patients compared to HCs (P < 0.05). In contrast, decreased activity was observed in the right cuneus, right posterior cingulate cortex, left cingulate gyrus, left precuneus, left middle frontal gyrus, and left superior frontal gyrus (P < 0.05).Conclusions This ALE meta-analysis identified abnormal spontaneous brain activity across multiple brain regions in BPD patients, contributing to a deeper neuroimaging-based understanding of BPD and offering valuable insights for future clinical interventions.
[Keywords] borderline personality disorder;resting-state functional magnetic resonance imaging;magnetic resonance imaging;activation likelihood estimation;Meta-analysis;spontaneous neural activity

SHU Yanping1   ZHANG Qin2   HOU Yongzhe1   LI Da1*  

1 Department of Psychiatry of Women and Children, Second People's Hospital of Guizhou Province, Guiyang 550000, China

2 Department of Radiology, Second People's Hospital of Guizhou Province, Guiyang 550000, China

Corresponding author: LI D, E-mail: lida925202506@163.com

Conflicts of interest   None.

Received  2025-06-02
Accepted  2025-09-03
DOI: 10.12015/issn.1674-8034.2025.10.003
Cite this article as: SHU Y P, ZHANG Q, HOU Y Z, et al. Altered spontaneous brain activity in patients with borderline personality disorder: An activation likelihood estimation Meta-analysis of resting-state fMRI studies[J]. Chin J Magn Reson Imaging, 2025, 16(10): 14-20. DOI:10.12015/issn.1674-8034.2025.10.003.

[1]
HERPERTZ S C, DIETRICH T M, WENNING B, et al. Evidence of abnormal amygdala functioning in borderline personality disorder: a functional MRI study[J]. Biol Psychiatry, 2001, 50(4): 292-298. DOI: 10.1016/s0006-3223(01)01075-7.
[2]
LEICHSENRING F, LEIBING E, KRUSE J, et al. Borderline personality disorder[J]. Lancet, 2011, 377(9759): 74-84. DOI: 10.1016/S0140-6736(10)61422-5.
[3]
KEW B M, MONK N J, CONNER T S, et al. Symptom Overlap Between Depression and Borderline Personality Disorder: A Network Analysis[J/OL]. Personal Ment Health, 2025, 19(2): e70019 [2025-06-02]. https://pubmed.ncbi.nlm.nih.gov/40260579/. DOI: 10.1002/pmh.70019.
[4]
SETKOWSKI K, PALANTZA C, VAN BALLEGOOIJEN W, et al. Which psychotherapy is most effective and acceptable in the treatment of adults with a (sub) clinical borderline personality disorder? A systematic review and network meta-analysis[J]. Psychol Med, 2023, 53(8): 3261-3280. DOI: 10.1017/S0033291723000685.
[5]
DING H, ZHANG Q, SHU Y P, et al. Vulnerable brain regions in adolescent major depressive disorder: A resting-state functional magnetic resonance imaging activation likelihood estimation meta-analysis[J/OL]. World J Psychiatry, 2024, 14(3): 456 [2025-06-02]. https://pubmed.ncbi.nlm.nih.gov/38617984/. DOI: 10.5498/wjp.v14.i3.456.
[6]
HOYER R, LAUREYS S. The Interest and Usefulness of Resting State fMRI in Brain Connectivity Research[J]. Brain Connect, 2024, 14(7): 354-356. DOI: 10.1089/brain.2024.0052.
[7]
WANG J, HUANG J, KANG X, et al. Progressive brain function changes in patients with neuromyelitis optica: insights from resting-state fMRI[J]. Brain Imaging Behav, 2025: 1-9. DOI: 10.1007/s11682-025-01012-x.
[8]
HUANG Y, ZHOU S, FENG S, et al. Differential relationships among homocysteine levels, cognitive deficits, and low-frequency fluctuation in brain activity in bipolar disorder with suicidal ideation[J/OL]. BMC Psychiatry, 2025, 25: 514 [2025-06-02]. https://pubmed.ncbi.nlm.nih.gov/40399851/. DOI: 10.1186/s12888-025-06925-x.
[9]
ZHANG H, LV Z, CHEN H, et al. The benefit and neural mechanisms of computerized inhibitory control training for insomnia with short sleep duration phenotype: a rs-fMRI Study[J/OL]. Behav Res Ther, 2025: 104776 [2025-06-02]. https://pubmed.ncbi.nlm.nih.gov/40398068/. DOI: 10.1016/j.brat.2025.104776.
[10]
SALVADOR R, VEGA D, PASCUAL J C, et al. Converging medial frontal resting state and diffusion-based abnormalities in borderline personality disorder[J]. Biol Psychiatry, 2016, 79(2): 107-116. DOI: 10.1016/j.biopsych.2014.08.026.
[11]
LEI X, ZHONG M, LIU Y, et al. A resting-state fMRI study in borderline personality disorder combining amplitude of low frequency fluctuation, regional homogeneity and seed based functional connectivity[J]. J Affect Disord, 2017, 218: 299-305. DOI: 10.1016/j.jad.2017.04.067.
[12]
LEI X, LIAO Y, ZHONG M, et al. Functional connectivity density, local brain spontaneous activity, and their coupling strengths in patients with borderline personality disorder[J/OL]. Front Psychiatry, 2018, 9: 342 [2025-06-02]. https://pubmed.ncbi.nlm.nih.gov/30100884/. DOI: 10.3389/fpsyt.2018.00342.
[13]
XIAO Q, YI X, FU Y, et al. Altered brain activity and childhood trauma in Chinese adolescents with borderline personality disorder[J]. J Affect Disord, 2023, 323: 435-443. DOI: 10.1016/j.jad.2022.12.003.
[14]
YI X, FU Y, ZHANG Z, et al. Altered regional homogeneity and its association with cognitive function in adolescents with borderline personality disorder[J/OL]. J Psychiatry Neurosci, 2023, 48(1): E1-E10 [2025-06-02]. DOI: 10.1503/jpn.220144.
[15]
XIAO Q, SHEN L, HE H, et al. Alteration of prefrontal cortex and its associations with emotional and cognitive dysfunctions in adolescent borderline personality disorder[J]. Eur Child Adolesc Psychiatry, 2024, 33(11): 3937-3949. DOI: 10.1007/s00787-024-02438-2.
[16]
ZHANG Q, HOU Y Z, ZHANG W, et al. Resting-state fMRI study of vulnerable brain regions in patients with primary insomnia: A Meta-analysis based on activation likelihood estimation[J]. Chin J Magn Reson Imaging, 2022, 13(6): 88-93. DOI: 10.12015/issn.1674-8034.2022.06.017.
[17]
RUOCCO A C, AMIRTHAVASAGAM S, CHOI-KAIN L W, et al. Neural correlates of negative emotionality in borderline personality disorder: an activation-likelihood-estimation meta-analysis[J]. Biol Psychiatry, 2013, 73(2): 153-160. DOI: 10.1016/j.biopsych.2012.07.014.
[18]
PAGE M J, MCKENZIE J E, BOSSUYT P M, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews[J/OL]. BMJ, 2021, 372 [2025-06-02]. https://pubmed.ncbi.nlm.nih.gov/33782057/. DOI: 10.1136/bmj.n71.
[19]
LO C K L, MERTZ D, LOEB M. Newcastle-Ottawa Scale: comparing reviewers' to authors' assessments[J]. BMC Med Res Methodol, 2014, 14: 1-5. DOI: 10.1186/1471-2288-14-45.
[20]
EICKHOFF S B, LAIRD A R, GREFKES C, et al. Coordinate‐based activation likelihood estimation meta‐analysis of neuroimaging data: A random-effects approach based on empirical estimates of spatial uncertainty[J]. Hum Brain Mapp. 2009, 30(9): 2907-2926. DOI: 10.1002/hbm.20718.
[21]
LAIRD A R, EICKHOFF S B, KURTH F, et al. ALE meta-analysis workflows via the brainmap database: progress towards a probabilistic functional brain atlas[J/OL]. Front Neuroinform, 2009, 3: 598 [2025-06-02]. https://pubmed.ncbi.nlm.nih.gov/19636392/. DOI: 10.3389/neuro.11.023.2009.
[22]
GUO L, MA J, CAI M, et al. Transcriptional signatures of the whole-brain voxel-wise resting-state functional network centrality alterations in schizophrenia[J/OL]. Schizophrenia, 2023, 9(1): 87 [2025-06-02]. https://pubmed.ncbi.nlm.nih.gov/38104130/. DOI: 10.1038/s41537-023-00422-4.
[23]
KAMALI A, SHERBAF F G, RAHMANI F, et al. A direct visuosensory cortical connectivity of the human limbic system. Dissecting the trajectory of the parieto-occipito-hypothalamic tract in the human brain using diffusion weighted tractography[J/OL]. Neurosci Lett, 2020, 728: 134955 [2025-06-02]. https://pubmed.ncbi.nlm.nih.gov/32278940/. DOI: 10.1016/j.neulet.2020.134955.
[24]
ZHAROVA N V, OSADCHIY A S, LOBANOVA A K, et al. Functional Anatomy of the Structures of the Limbic System Involved in the Development of Neuropsychiatric Disorders: A Review[J]. Current Behavioral Neuroscience Reports, 2025, 12(1): 1-13. DOI: 10.1007/s40473-024-00291-w.
[25]
ZHOU Y, ZHANG S, TAN Z J, et al. Study on brain microstructure in patients with white matter hyperintensities and depressive symptoms based on multimodal MRI[J]. Chin J Magn Reson Imaging, 2024, 15(11): 24-31. DOI: 10.12015/issn.1674-8034.2024.11.005.
[26]
ZHOU X, WU S, WANG K, et al. Impact of Spinal Manipulative Therapy on Brain Function and Pain Alleviation in Lumbar Disc Herniation: A Resting-State fMRI Study[J]. Chin J Integr Med, 2025, 31(2): 108-117. DOI: 10.1007/s11655-024-4205-7.
[27]
NIEDTFELD I, KIRSCH P, SCHULZE L, et al. Functional connectivity of pain-mediated affect regulation in borderline personality disorder[J/OL]. PLoS One, 2012, 7(3): e33293 [2025-06-02]. https://pubmed.ncbi.nlm.nih.gov/22428013/. DOI: 10.1371/journal.pone.0033293.
[28]
YI X, WANG X, FU Y, et al. Altered resting-state functional connectivity and its association with executive function in adolescents with borderline personality disorder[J]. Eur Child Adolesc Psychiatry, 2024, 33(6): 1721-1730. DOI: 10.1007/s00787-023-02277-7.
[29]
KRAUSE-UTZ A, WINTER D, SCHRINER F, et al. Reduced amygdala reactivity and impaired working memory during dissociation in borderline personality disorder[J]. Eur Arch Psychiatry Clin Neurosci, 2018, 268: 401-415. DOI: 10.1007/s00406-017-0806-x.
[30]
SABBAH A, MOTTAGHI S, GHAEDI P, et al. The comparison of hot and cold executive functions in patients with bipolar II disorder, borderline personality disorder, and healthy individuals[J]. Ann Med Surg (Lond), 2024, 86(5): 2598-2605. DOI: 10.1097/MS9.0000000000001981.
[31]
BARDEL G, GROSS A T, NEACSIU C B. The neural circuitry of emotional regulation: evidence from multimodal imaging[J]. BrainBridge: Neuroscience and Biomedical Engineering, 2024, 1(1): 27-41. DOI: 10.1016/j.chc.2007.02.005.
[32]
HE Y, SWEATMAN H, THOMSON A R, et al. Regional Excitatory-Inhibitory Balance Relates to Self-Reference Effect on Recollection via the Precuneus/Posterior Cingulate Cortex–Medial Prefrontal Cortex Connectivity[J/OL]. J Neurosci, 2025, 20: e2343242025 [2025-06-02]. https://pubmed.ncbi.nlm.nih.gov/40393808/. DOI: 10.1523/JNEUROSCI.2343-24.2025.
[33]
GOODMAN M, HAZLETT E A, AVEDON J B, et al. Anterior cingulate volume reduction in adolescents with borderline personality disorder and co-morbid major depression[J]. J Psychiatr Res, 2011, 45(6): 803-807. DOI: 10.1016/j.jpsychires.2010.11.011.
[34]
SALGADO-PINEDA P, FERRER M, CALVO N, et al. Brain functional abnormality in drug naïve adolescents with borderline personality disorder during self-and other-reflection[J/OL]. Transl Psychiatry, 2025, 15(1): 157 [2025-06-02]. https://pubmed.ncbi.nlm.nih.gov/40268904/. DOI: 10.1038/s41398-025-03368-6.
[35]
PARMIGIANI S, CLINE C C, SARKAR M, et al. Real-time optimization to enhance noninvasive cortical excitability assessment in the human dorsolateral prefrontal cortex[J]. Clin Neurophysiol, 2025, 174: 225-234. DOI: 10.1016/j.clinph.2025.02.261.
[36]
SILBERSWEIG D, CLARKIN J F, GOLDSTEIN M, et al. Failure of frontolimbic inhibitory function in the context of negative emotion in borderline personality disorder[J]. Am J Psychiatry, 2007, 164(12): 1832-1841. DOI: 10.1176/appi.ajp.2007.06010126.
[37]
WOJCIECHOWSKI T. Borderline personality disorder as a predictor of drug use variety: Cognitive vs. affective mechanisms[J]. J Psychoactive Drugs, 2022, 54(5): 452-461. DOI: 10.1080/02791072.2021.2009067.
[38]
THORNTON O, LI W, COLE H, et al. Borderline personality disorder and neuroplasticity: A review[J]. International Neuropsychiatric Disease Journal, 2023, 19(1): 1-8. DOI: 10.9734/INDJ/2023/v19i2367.
[39]
SHU T, XU H J, LIU S D, et al. Influencing factors of psychological crisis among college students with borderline personality disorder traits[J]. Academic Journal of Naval Medical University, 2025, 46(5): 668-673. DOI: 10.16781/j.CN31-2187/R.20240340.
[40]
XIA H L. Characteristic description and causal analysis of borderline personality disorder[J]. Psychologies, 2018, 11: 2-4. DOI: 10.19738/j.cnki.psy.2018.11.002.
[41]
WOLF R C, SAMBATARO F, VASIC N, et al. Aberrant connectivity of resting-state networks in borderline personality disorder[J]. J Psychiatry Neurosci, 2011, 36(6): 402-411. DOI: 10.1503/jpn.100150.
[42]
PARPART H, BLASS J, MEINDL T, et al. Two Sides of the Same Coin in Female Borderline Personality Disorder: Self-Reported Guilt and Shame and Their Neurofunctional Correlates[J/OL]. Brain Sci, 2024, 14(6): 549 [2025-06-02]. https://pubmed.ncbi.nlm.nih.gov/38928549/. DOI: 10.3390/brainsci14060549.
[43]
DENNY B T, LOPEZ R B, WU-CHUNG E L, et al. Training in cognitive reappraisal normalizes whole-brain indices of emotion regulation in borderline personality disorder[J]. Biol Psychiatry Cogn Neurosci Neuroimaging, 2024, 9(8): 819-826. DOI: 10.1016/j.bpsc.2024.03.007.
[44]
VISINTIN E, DE PANFILIS C, AMORE M, et al. Mapping the brain correlates of borderline personality disorder: a functional neuroimaging meta-analysis of resting state studies[J]. J Affect Disord, 2016, 204: 262-269. DOI: 10.1016/j.jad.2016.07.025.
[45]
XIAO Y, DONG S, PAN C, et al. Effectiveness of non-invasive brain stimulation on depressive symptoms targeting prefrontal cortex in functional magnetic resonance imaging studies: a combined systematic review and meta-analysis[J/OL]. Psychoradiology, 2024, 4: kkae025 [2025-06-02]. https://pubmed.ncbi.nlm.nih.gov/39659696/. DOI: 10.1093/psyrad/kkae025.
[46]
BARBER N, VALOUMAS I, LEGER K R, et al. Culture, prefrontal volume, and memory[J/OL]. PLoS One, 2024, 19(3): e0298235 [2025-06-02]. https://pubmed.ncbi.nlm.nih.gov/38551909/. DOI: 10.1371/journal.pone.0298235.

PREV Effects of acupuncture at the Si Guan points on functional connectivity of hippocampal subregions in patients with Alzheimer<sup><sup>,</sup></sup>s disease
NEXT Research on the application of automatic fiber quantification technique in detecting segmental alterations in cerebral white matter tracts in patients with migraine without aura in the ictal phase
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn