Share:
Share this content in WeChat
X
Clinical Article
Research on the application of automatic fiber quantification technique in detecting segmental alterations in cerebral white matter tracts in patients with migraine without aura in the ictal phase
QIU Jiamin  WANG Xinyi  ZHAI Changhong  ZHANG He  GUO Yaowen  LI Qian  LI Qinglong  CUI Yinglin  WANG Tongming 

Cite this article as: QIU J M, WANG X Y, ZHAI C H, et al. Research on the application of automatic fiber quantification technique in detecting segmental alterations in cerebral white matter tracts in patients with migraine without aura in the ictal phase[J]. Chin J Magn Reson Imaging, 2025, 16(10): 21-27. DOI:10.12015/issn.1674-8034.2025.10.004.


[Abstract] Objective To explore segmental microstructural alterations of cerebral white matter tracts in patients with migraine without aura (MwoA) in the ictal phase using automatic fiber quantification (AFQ), and to analyze the relationship between these alterations and clinical symptoms.Materials and Methods A total of 45 MwoA patients in the ictal phase (MwoA group) and 30 matched healthy controls (HC) were enrolled. Clinical data and MRI data were collected. AFQ technology was applied to analyze diffusion tensor imaging (DTI) data at both entire and nodal levels. Twenty white matter tracts across the brain were tracked, and 100 equidistant nodes were defined for each tract to calculate diffusion indices, including fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD). Two-sample t-tests were used to compare diffusion indices between groups, and partial correlation analysis was performed to assess the correlation between abnormal tract indices in the MwoA group and clinical scale scores.Results Compared with the HC group, at the entire level, the MwoA group exhibited increased MD and RD in the forceps minor of the corpus callosum (CF minor) (FDR correction, all P < 0.05). Nodal analysis revealed that the MwoA group exhibited decreased FA in the left inferior fronto-occipital fasciculus (IFOF), increased MD in the left thalamic radiation (TR), the CF minor, and the right IFOF, increased AD in the right IFOF, decreased AD in the left uncinate fasciculus (UF), and increased RD in the left TR and CF minor (FDR correction, all P < 0.05). Additionally, the mean AD and MD values of the abnormal segments in the right IFOF were positively correlated with headache impact test scores (r = 0.351, r = 0.331, all P < 0.05), while the mean AD value of the abnormal segments in the left UF was negatively correlated with migraine-specific quality of life questionnaire scores (r = -0.535, P < 0.001).Conclusions In the MwoA ictal period, patients exhibit segmental microstructural damage in multiple white matter fiber tracts. Segmental abnormalities in the right inferior fronto-occipital fasciculus and left uncinate fasciculus may be closely associated with the neuropathological mechanisms of MwoA in the ictal phase.
[Keywords] migraine without aura;ictal phase;magnetic resonance imaging;diffusion tensor imaging;automatic fiber quantification

QIU Jiamin1, 2   WANG Xinyi3   ZHAI Changhong2   ZHANG He2   GUO Yaowen2   LI Qian2   LI Qinglong2   CUI Yinglin4   WANG Tongming2*  

1 The Second Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou 450046, China

2 Department of Magnetic Resonance, Henan Provincial Hospital of Traditional Chinese Medicine (The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine), Zhengzhou 450002, China

3 Department of Radiology, Henan Provincial Hospital of Traditional Chinese Medicine (The Second Affiliated Hospital of Henan University of Chinese Medicine), Zhengzhou 450002, China

4 Famous Doctor Hall, Henan Provincial Hospital of Traditional Chinese Medicine (The Second Affiliated Hospital of Henan University of Chinese Medicine), Zhengzhou 450002, China

Corresponding author: WANG T M, E-mail: w13526634558@163.com

Conflicts of interest   None.

Received  2025-06-26
Accepted  2025-10-08
DOI: 10.12015/issn.1674-8034.2025.10.004
Cite this article as: QIU J M, WANG X Y, ZHAI C H, et al. Research on the application of automatic fiber quantification technique in detecting segmental alterations in cerebral white matter tracts in patients with migraine without aura in the ictal phase[J]. Chin J Magn Reson Imaging, 2025, 16(10): 21-27. DOI:10.12015/issn.1674-8034.2025.10.004.

[1]
STEINER T J, STOVNER L J. Global epidemiology of migraine and its implications for public health and health policy[J]. Nat Rev Neurol, 2023, 19(2): 109-117. DOI: 10.1038/s41582-022-00763-1.
[2]
Headache Classification Committee of the International Headache Society (IHS). The International Classification of Headache Disorders, 3rd edition[J]. Cephalalgia, 2018, 38(1): 1-211. DOI: 10.1177/0333102417738202.
[3]
CHOU B C, LERNER A, BARISANO G, et al. Functional MRI and Diffusion Tensor Imaging in Migraine: A Review of Migraine Functional and White Matter Microstructural Changes[J/OL]. J Cent Nerv Syst Dis, 2023, 15: 11795735231205413 [2025-06-26]. https://doi.org/10.1177/11795735231205413. DOI: 10.1177/11795735231205413.
[4]
GUADILLA I, FOUTO A R, RUIZ-TAGLE A, et al. White matter alterations in episodic migraine without aura patients assessed with diffusion MRI: effect of free water correction[J/OL]. J Headache Pain, 2025, 26(1): 31 [2025-06-26]. https://doi.org/10.1186/s10194-025-01970-z. DOI: 10.1186/s10194-025-01970-z.
[5]
ZHANG W, CHENG Z, FU F, et al. Prevalence and clinical characteristics of white matter hyperintensities in Migraine: A meta-analysis[J/OL]. Neuroimage Clin, 2023, 37: 103312 [2025-06-26]. https://doi.org/10.1016/j.nicl.2023.103312. DOI: 10.1016/j.nicl.2023.103312.
[6]
ARONICA R, ENRICO P, SQUARCINA L, et al. Association between Diffusion Tensor Imaging, inflammation and immunological alterations in unipolar and bipolar depression: A review[J/OL]. Neurosci Biobehav Rev, 2022, 143: 104922 [2025-06-26]. https://doi.org/10.1016/j.neubiorev.2022.104922. DOI: 10.1016/j.neubiorev.2022.104922.
[7]
SHIRBANDI K, JAFARI M, MAZAHERI F, et al. Diffusion Tensor Imaging Along the Perivascular Space Is a Promising Imaging Method in Parkinson's Disease: A Systematic Review and Meta-Analysis Study[J/OL]. CNS Neurosci Ther, 2025, 31(5): e70434 [2025-06-26]. https://doi.org/10.1111/cns.70434. DOI: 10.1111/cns.70434.
[8]
TANTIK PAK A, NACAR DOGAN S, SENGUL Y. Structural integrity of corpus callosum in patients with migraine: a diffusion tensor imaging study[J]. Acta Neurol Belg, 2023, 123(2): 385-390. DOI: 10.1007/s13760-021-01863-3.
[9]
XU T Y, FENG Y L, SHANG X Y, et al. Diagnostic value of migraine without aura based on DTI technique[J]. Journal of China Clinic Medical Imaging, 2023, 34(10): 691-695. DOI: 10.12117/jccmi.2023.10.002.
[10]
ZHANG Y, ZHAN F. Diffusion tensor imaging (DTI) Analysis Based on Tract-based spatial statistics (TBSS) and Classification Using Multi-Metric in Alzheimer's Disease[J/OL]. J Integr Neurosci, 2023, 22(4): 101 [2025-06-26]. https://doi.org/10.31083/j.jin2204101. DOI: 10.31083/j.jin2204101.
[11]
CHEN H, SHENG X, QIN R, et al. Aberrant White Matter Microstructure as a Potential Diagnostic Marker in Alzheimer's Disease by Automated Fiber Quantification[J/OL]. Front Neurosci, 2020, 14: 570123 [2025-06-26]. https://doi.org/10.3389/fnins.2020.570123. DOI: 10.3389/fnins.2020.570123.
[12]
YAN Z, TAN Z, ZHU Q, et al. Cross-sectional and longitudinal evaluation of white matter microstructure damage and cognitive correlations by automated fibre quantification in relapsing-remitting multiple sclerosis patients[J]. Brain Imaging Behav, 2024, 18(5): 1019-1033. DOI: 10.1007/s11682-024-00893-8.
[13]
LI M, IZUMOTO M, WANG Y, et al. Altered white matter connectivity of ventral language networks in autism spectrum disorder: An automated fiber quantification analysis with multi-site datasets[J/OL]. Neuroimage, 2024, 297: 120731 [2025-06-26]. https://doi.org/10.1016/j.neuroimage.2024.120731. DOI: 10.1016/j.neuroimage.2024.120731.
[14]
XU L L, LI K S, DU Z M, et al. Diffusion Tensor Imaging in Patients with Migraine Without Aura Receiving Acupuncture Intervention[J]. Journal of Anhui University of Chinese Medicine, 2023, 42(2): 41-46. DOI: 10.3969/j.issn.2095-7246.2023.02.010.
[15]
Society of Neurology, Chinese Association of the Integration of Traditional and Western Medicine. Chinese Guideline for the Integrated Traditional and Western Medicine in the Prevention and Treatment of Migraine (2022)[J]. Chinese Journal of Integrated Traditional and Western Medicine, 2023, 43(5): 517-526. DOI: 10.7661/j.cjim.20230414.017.
[16]
LÖWE B, DECKER O, MÜLLER S, et al. Validation and standardization of the Generalized Anxiety Disorder Screener (GAD-7) in the general population[J]. Med Care, 2008, 46(3): 266-274. DOI: 10.1097/MLR.0b013e318160d093.
[17]
NEGERI Z F, LEVIS B, SUN Y, et al. Accuracy of the Patient Health Questionnaire-9 for screening to detect major depression: updated systematic review and individual participant data meta-analysis[J/OL]. BMJ, 2021, 375: n2183 [2025-06-26]. https://doi.org/10.1136/bmj.n2183. DOI: 10.1136/bmj.n2183.
[18]
WANG L, DING S, QIN W, et al. Alterations in the white matter fiber tracts of preschool-aged children with autism spectrum disorder: an automated fiber quantification study[J]. Quant Imaging Med Surg, 2024, 14(12): 9347-9360. DOI: 10.21037/qims-24-950.
[19]
BARIL A A, GAGNON K, DESCOTEAUX M, et al. Cerebral white matter diffusion properties and free-water with obstructive sleep apnea severity in older adults[J]. Hum Brain Mapp, 2020, 41(10): 2686-2701. DOI: 10.1002/hbm.24971.
[20]
YU B, DING Z, WANG L, et al. Application of Diffusion Tensor Imaging Based on Automatic Fiber Quantification in Alzheimer's Disease[J]. Curr Alzheimer Res, 2022, 19(6): 469-478. DOI: 10.2174/1567205019666220718142130.
[21]
ZHANG Y, VAKHTIN A A, JENNINGS J S, et al. Diffusion tensor tractography of brainstem fibers and its application in pain[J/OL]. PLoS One, 2020, 15(2): e0213952 [2025-06-26]. https://doi.org/10.1371/journal.pone.0213952. DOI: 10.1371/journal.pone.0213952.
[22]
DING S, GUO Y, CHEN X, et al. Demyelination and remyelination detected in an alternative cuprizone mouse model of multiple sclerosis with 7.0 T multiparameter magnetic resonance imaging[J/OL]. Sci Rep, 2021, 11(1): 11060 [2025-06-26]. https://doi.org/10.1038/s41598-021-90597-6. DOI: 10.1038/s41598-021-90597-6.
[23]
COPPOLA G, DI RENZO A, TINELLI E, et al. Patients with chronic migraine without history of medication overuse are characterized by a peculiar white matter fiber bundle profile[J/OL]. J Headache Pain, 2020, 21(1): 92 [2025-06-26]. https://doi.org/10.1186/s10194-020-01159-6. DOI: 10.1186/s10194-020-01159-6.
[24]
PETRUŠIĆ I, DAKOVIĆ M, KAČAR K, et al. Migraine with aura and white matter tract changes[J]. Acta Neurol Belg, 2018, 118(3): 485-491. DOI: 10.1007/s13760-018-0984-y.
[25]
ZHANG Y N, HAN F, LIU N, et al. A study of white matter changes in female migraine patients based on TBSS[J]. Chinese Imaging Journal of Integrated Traditional and Western Medicine, 2024, 22(5): 532-537. DOI: 10.3969/j.issn.1672-0512.2024.05.008.
[26]
RUIZ-RIZZO A L, VIVIANO R P, DAUGHERTY A M, et al. Subjective cognitive decline predicts lower cingulo-opercular network functional connectivity in individuals with lower neurite density in the forceps minor[J/OL]. Neuroimage, 2022, 263: 119662 [2025-06-26]. https://doi.org/10.1016/j.neuroimage.2022.119662. DOI: 10.1016/j.neuroimage.|2022.119662.
[27]
SHIBATA Y, ISHIYAMA S. Neurite Damage in Patients with Migraine[J]. Neurol Int, 2024, 16(2): 299-311. DOI: 10.3390/neurolint16020021.
[28]
ALEXANDER G E, DELONG M R, STRICK P L. Parallel organization of functionally segregated circuits linking basal ganglia and cortex[J]. Annu Rev Neurosci, 1986, 9: 357-381. DOI: 10.1146/annurev.ne.09.030186.002041.
[29]
ZHAO L, ZHAO W, CAO J, et al. Causal relationships between migraine and microstructural white matter: a Mendelian randomization study[J/OL]. J Headache Pain, 2023, 24(1): 10 [2025-06-26]. https://doi.org/10.1186/s10194-023-01550-z. DOI: 10.1186/s10194-023-01550-z.
[30]
MEI Y, WANG W, QIU D, et al. Micro-structural white matter abnormalities in new daily persistent headache: a DTI study using TBSS analysis[J/OL]. J Headache Pain, 2023, 24(1): 80 [2025-06-26]. https://doi.org/10.1186/s10194-023-01620-2. DOI: 10.1186/s10194-023-01620-2.
[31]
GIAMPICCOLO D, HERBET G, DUFFAU H. The inferior fronto-occipital fasciculus: bridging phylogeny, ontogeny and functional anatomy[J]. Brain, 2025, 148(5): 1507-1525. DOI: 10.1093/brain/awaf055.
[32]
LI Z, MEI Y, WANG W, et al. White matter and cortical gray matter microstructural abnormalities in new daily persistent headache: a NODDI study[J/OL]. J Headache Pain, 2024, 25(1): 110 [2025-06-26]. https://doi.org/10.1186/s10194-024-01815-1. DOI: 10.1186/s10194-024-01815-1.
[33]
XU E, NGUYEN L, HU R, et al. The uncinate fasciculus in individuals with and at risk for bipolar disorder: A meta-analysis[J]. J Affect Disord, 2022, 297: 208-216. DOI: 10.1016/j.jad.2021.10.045.
[34]
BUBB E J, METZLER-BADDELEY C, AGGLETON J P. The cingulum bundle: Anatomy, function, and dysfunction[J]. Neurosci Biobehav Rev, 2018, 92: 104-127. DOI: 10.1016/j.neubiorev.2018.05.008.
[35]
CHONG C D, PEPLINSKI J, BERISHA V, et al. Differences in fibertract profiles between patients with migraine and those with persistent post-traumatic headache[J]. Cephalalgia, 2019, 39(9): 1121-1133. DOI: 10.1177/0333102418815650.
[36]
CHRISTMAN S D, HACKWORTH M D. Equivalent perceptual asymmetries for free viewing of positive and negative emotional expressions in chimeric faces[J]. Neuropsychologia, 1993, 31(6): 621-624. DOI: 10.1016/0028-3932(93)90056-6.

PREV Altered spontaneous brain activity in patients with borderline personality disorder: An activation likelihood estimation Meta-analysis of resting-state fMRI studies
NEXT QSM and DKI for evaluation of iron deposition and microstructural alterations in gray matter nuclei of cerebral small vessel disease with mild cognitive impairment
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn