Share:
Share this content in WeChat
X
Clinical Article
A study on the correlation between quantitative parameters of DCE-MRI and the pathological grading and angiogenesis of extrahepatic cholangiocarcinoma
LI Shuangshuang  YANG Ting  SUN Xijun  LI Penghui  PENG Shankai  ZHANG Li 

Cite this article as: LI S S, YANG T, SUN X J, et al. A study on the correlation between quantitative parameters of DCE-MRI and the pathological grading and angiogenesis of extrahepatic cholangiocarcinoma[J]. Chin J Magn Reson Imaging, 2025, 16(10): 55-59. DOI:10.12015/issn.1674-8034.2025.10.009.


[Abstract] Objective To explore the correlation between quantitative perfusion parameters of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and the pathological grade and angiogenesis of extrahepatic cholangiocarcinoma (ECCA).Materials and Methods Fifty patients with ECCA underwent conventional MRI and DCE-MRI scans before surgery. The microvessel density (MVD) and vascular endothelial growth factor (VEGF) expression in postoperative specimens were detected by immunohistochemistry. The relationships between DCE-MRI quantitative parameters and pathological grade, MVD, and VEGF expression were analyzed.Results Among the 50 patients with ECCA, 15 cases were well differentiated, 23 cases were moderately differentiated, and 12 cases were poorly differentiated. The volume transfer constant (Ktrans) and extracellular extravascular volume fraction (Ve) of ECCA patients were not correlated with pathological grade or VEGF expression (P > 0.05). Ktrans was positively correlated with MVD (r = 0.524, P < 0.001), while the rate constant (Kep) and Ve were not related to MVD (P > 0.05).Conclusions The DCE-MRI parameter Ktrans is positively correlated with MVD, confirming its feasibility in non-invasively reflecting the angiogenesis of ECCA to a certain extent; however, since Kep and Ve values do not show a similar correlation, their efficacy in evaluating invasiveness and prognosis still needs to be further verified by prospective studies with larger samples.
[Keywords] extrahepatic cholangiocarcinoma;tumor angiogenesis;dynamic contrast-enhanced magnetic resonance imaging;pathological grade

LI Shuangshuang1   YANG Ting2   SUN Xijun2   LI Penghui2   PENG Shankai2   ZHANG Li2*  

1 The First Clinical Medical College of Gansu University of Traditional Chinese Medicine, Lanzhou 730000, China

2 Department of MRI, the Second People's Hospital of Lanzhou, Lanzhou Second People's Hospital, Lanzhou 730000, China

Corresponding author: ZHANG L, E-mail: zhl-688@126.com

Conflicts of interest   None.

Received  2025-07-24
Accepted  2025-10-10
DOI: 10.12015/issn.1674-8034.2025.10.009
Cite this article as: LI S S, YANG T, SUN X J, et al. A study on the correlation between quantitative parameters of DCE-MRI and the pathological grading and angiogenesis of extrahepatic cholangiocarcinoma[J]. Chin J Magn Reson Imaging, 2025, 16(10): 55-59. DOI:10.12015/issn.1674-8034.2025.10.009.

[1]
YANG Y H, ZHANG X L. An overview of extrahepatic cholangiocarcinoma: from here to where [J/OL]. Front Oncol, 2023, 13: 1171098 [2025-01-01]. https://pubmed.ncbi.nlm.nih.gov/37197436/. DOI: 10.3389/fonc.2023.1171098.
[2]
CLEMENTS O, ELIAHOO J, KIM J U, et al. Risk factors for intrahepatic and extrahepatic cholangiocarcinoma: a systematic review and meta-analysis[J]. J Hepatol, 2020, 72(1): 95-103. DOI: 10.1016/j.jhep.2019.09.007.
[3]
VITHAYATHIL M, KHAN S A. Current epidemiology of cholangiocarcinoma in western countries[J]. J Hepatol, 2022, 77(6): 1690-1698. DOI: 10.1016/j.jhep.2022.07.022.
[4]
ZHAO Y H, YANG M, FENG J Y, et al. Advances in immunotherapy for biliary tract cancers[J]. Chin Med J (Engl), 2024, 137(5): 524-532. DOI: 10.1097/CM9.0000000000002759.
[5]
ZHAO J N, LIU Y, WANG X, et al. Review and interpretation on the updates of National Comprehensive Cancer Network clinical practice guidelines in oncology for extrahepatic cholangiocarcinoma(version 2.2024)[J]. J Clin Surg, 2025, 33(1): 36-38. DOI: 10.3969/j.issn.1005-6483.20242005.
[6]
VOGEL A, BRIDGEWATER J, EDELINE J, et al. Biliary tract cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up[J]. Ann Oncol, 2023, 34(2): 127-140. DOI: 10.1016/j.annonc.2022.10.506.
[7]
Biliary Surgery Group of the Surgery Branch of the Chinese Medical Association, Biliary Surgery Expert Working Group of the Surgery Branch of the Chinese Medical Doctor Association. Expert consensus on conversion therapy of biliary tract cancer (2025)[J/OL]. Chin J Surg, 2025, 63(6): 453-460. [2025-01-01]. https://rs.yiigle.com/cmaid/1537850. DOI: 10.3760/cma.j.cn112139-20250310-00118.
[8]
ROMANZI A, VILLA E. Angiogenesis: the Yin and Yang in intrahepatic cholangiocarcinoma[J/OL]. Hepatoma Res, 2023, 9: 41-54 [2025-01-01]. https://iris.unimore.it/handle/11380/1328666. DOI: 10.20517/2394-5079.2023.53.
[9]
RIMINI M, CASADEI-GARDINI A. Angiogenesis in biliary tract cancer: targeting and therapeutic potential[J]. Expert Opin Investig Drugs, 2021, 30(4): 411-418. DOI: 10.1080/13543784.2021.1881479.
[10]
SIMONE V, BRUNETTI O, LUPO L, et al. Targeting angiogenesis in biliary tract cancers: An open option[J/OL]. Int J Mol Sci, 2017, 18(2): 418 [2025-01-01]. https://pubmed.ncbi.nlm.nih.gov/28212293/. DOI: 10.3390/ijms18020418.
[11]
ILANGO J, MANI D, RAVIKUMAR S, et al. Immunohistochemical expression of VEGF and microvessel density (CD 34) in oral epithelial dysplasia and oral squamous cell carcinoma: original research[J]. Asian Pac J Cancer Prev, 2025, 26(1): 147-151. DOI: 10.31557/APJCP.2025.26.1.147.
[12]
XU K P, FANG X Z, LIN Y, et al. Correlation between MRI radiomics and neovascularization of breast cancer[J]. Chin J Magn Reson Imag, 2022, 13(8): 146-149. DOI: 10.12015/issn.1674-8034.2022.08.033.
[13]
QIU Z J, WU J J, PANG G C, et al. CD34 evaluation of microvasculature in lung adenocarcinoma and its microvascular density predicts postoperative tumor recurrence[J/OL]. Pathol Oncol Res, 2025, 31: 1611985 [2025-01-01]. https://pubmed.ncbi.nlm.nih.gov/39906069/. DOI: 10.3389/pore.2025.1611985.
[14]
MEYER H J, POTRATZ J, JECHOREK D, et al. Associations between dynamic contrast-enhanced magnetic resonance imaging with histopathological features in cholangiocarcinoma[J]. Dig Dis, 2025, 43(1): 46-53. DOI: 10.1159/000540958.
[15]
ZHANG R, SHI Q Q, WANG Z Q. Clinical efficacy of DCE-MRI, DWI and MRCP in the diagnosis of patients with extrahepatic cholangiocarcinoma[J]. J Pract Hepatol, 2023, 26(6): 923-926. DOI: 10.3969/j.issn.1672-5069.2023.06.039.
[16]
XIAO J, RAHBAR H, HIPPE D S, et al. Dynamic contrast-enhanced breast MRI features correlate with invasive breast cancer angiogenesis[J/OL]. NPJ Breast Cancer, 2021, 7(1): 42 [2025-01-01]. https://pubmed.ncbi.nlm.nih.gov/33863924/. DOI: 10.1038/s41523-021-00247-3.
[17]
SACHANI P, DHANDE R, PARIHAR P, et al. Enhancing the understanding of breast vascularity through insights from dynamic contrast-enhanced magnetic resonance imaging: a comprehensive review[J/OL]. Cureus, 2024, 16(9): e70226 [2025-01-01]. https://pubmed.ncbi.nlm.nih.gov/39463566/. DOI: 10.7759/cureus.70226.
[18]
LI X, HUANG W, HOLMES J H. Dynamic contrast-enhanced (DCE) MRI[J]. Magn Reson Imaging Clin N Am, 2024, 32(1): 47-61. DOI: 10.1016/j.mric.2023.09.001.
[19]
CONTE M, WOODALL R T, GUTOVA M, et al. Structural and practical identifiability of contrast transport models for DCE-MRI[J/OL]. PLoS Comput Biol, 2024, 20(5): e1012106 [2025-01-01]. https://pubmed.ncbi.nlm.nih.gov/38187554/. DOI: 10.1371/journal.pcbi.1012106.
[20]
TANG Y, YANG C M, SU S, et al. Machine learning-based Radiomics analysis for differentiation degree and lymphatic node metastasis of extrahepatic cholangiocarcinoma[J/OL]. BMC Cancer, 2021, 21(1): 1268 [2025-01-01]. https://pubmed.ncbi.nlm.nih.gov/34819043/. DOI: 10.1186/s12885-021-08947-6.
[21]
KENDALL T, VERHEIJ J, GAUDIO E, et al. Anatomical, histomorphological and molecular classification of cholangiocarcinoma[J]. Liver Int, 2019, 39(Suppl 1): 7-18. DOI: 10.1111/liv.14093.
[22]
ALSAAB H O, AL-HIBS A S, ALZHRANI R, et al. Nanomaterials for antiangiogenic therapies for cancer: a promising tool for personalized medicine[J/OL]. Int J Mol Sci, 2021, 22(4): 16318 [2025-01-01]. https://pubmed.ncbi.nlm.nih.gov/33562829/. DOI: 10.3390/ijms22041631.
[23]
FOLKMAN J. What is the evidence that tumors are angiogenesis dependent [J]. J Natl Cancer Inst, 1990, 82(1): 4-6. DOI: 10.1093/jnci/82.1.4.
[24]
LORENC P, SIKORSKA A, MOLENDA S, et al. Physiological and tumor-associated angiogenesis: key factors and therapy targeting VEGF/VEGFR pathway[J/OL]. Biomed Pharmacother, 2024, 180: 117585 [2025-01-01]. https://pubmed.ncbi.nlm.nih.gov/39442237/. DOI: 10.1016/j.biopha.2024.117585.
[25]
HASSANPOUR M, SALYBEKOV A A, KOBAYASHI S, et al. CD34 positive cells as endothelial progenitor cells in biology and medicine[J/OL]. Front Cell Dev Biol, 2023, 11: 1128134 [2025-01-01]. https://pubmed.ncbi.nlm.nih.gov/37138792/. DOI: 10.3389/fcell.2023.1128134.
[26]
ZHU B, YANG J R, JIANG Y Q, et al. Evaluation of angiogenesis in non-small cell lung carcinoma by CD34 immunohistochemistry[J]. Cell Biochem Biophys, 2014, 70(1): 327-331. DOI: 10.1007/s12013-014-9916-5.
[27]
CHEN L, YIN G T, WANG Z Y, et al. A predictive radiotranscriptomics model based on DCE-MRI for tumor immune landscape and immunotherapy in cholangiocarcinoma[J]. Biosci Trends, 2024, 18(3): 263-276. DOI: 10.5582/bst.2024.01121.
[28]
MOCAN L P, RUSU I, MELINCOVICI C S, et al. The role of immunohistochemistry in the differential diagnosis between intrahepatic cholangiocarcinoma, hepatocellular carcinoma and liver metastasis, as well as its prognostic value[J/OL]. Diagnostics (Basel), 2023, 13(9): 1542 [2025-01-01]. https://pubmed.ncbi.nlm.nih.gov/37174934/. DOI: 10.3390/diagnostics13091542.
[29]
NAKANUMA Y, LI Z H, SATO Y, et al. A pathological assessment of the microvasculature of biliary tract neoplasms referring to pre-existing blood vessels and vessel co-option[J/OL]. Cancers (Basel), 2024, 16(22): 3869 [2025-01-01]. https://pubmed.ncbi.nlm.nih.gov/39594825/. DOI: 10.3390/cancers16223869.
[30]
ZHANG J, ZHENG Y R, LI L, et al. Combination of IVIM with DCE-MRI for diagnostic and prognostic evaluation of breast cancer[J/OL]. Magn Reson Imaging, 2024, 113: 110204 [2025-01-01]. https://pubmed.ncbi.nlm.nih.gov/38971263/. DOI: 10.1016/j.mri.2024.07.003.
[31]
YUAN J, LIU K, ZHANG Y, et al. Quantitative dynamic contrast-enhance MRI parameters for rectal carcinoma characterization: correlation with tumor tissue composition[J/OL]. World J Surg Oncol, 2023, 21(1): 306 [2025-01-01]. https://pubmed.ncbi.nlm.nih.gov/37749564/. DOI: 10.1186/s12957-023-03193-5.
[32]
DU Y H, ZHANG S, LIANG T, et al. Dynamic contrast-enhanced MRI perfusion parameters are imaging biomarkers for angiogenesis in lung cancer[J]. Acta Radiol, 2023, 64(2): 572-580. DOI: 10.1177/02841851221088581.
[33]
SUN H M, DU F L, LIU Y, et al. DCE-MRI and DWI can differentiate benign from malignant prostate tumors when serum PSA is ≥10 ng/ml[J/OL]. Front Oncol, 2022, 12: 925186 [2025-01-01]. https://pubmed.ncbi.nlm.nih.gov/36578948/. DOI: 10.3389/fonc.2022.925186.
[34]
PETRALIA G, SUMMERS P E, AGOSTINI A, et al. Dynamic contrast-enhanced MRI in oncology: how we do it[J]. Radiol Med, 2020, 125(12): 1288-1300. DOI: 10.1007/s11547-020-01220-z.
[35]
ALAREER H S N, TAHER H J, ABDULLAH A D. Dynamic contrast enhanced-MRI and apparent diffusion coefficient quantitation for differentiate hepatocellular carcinoma from hepatocellular adenoma[J]. Asian Pac J Cancer Prev, 2024, 25(3): 931-937. DOI: 10.31557/APJCP.2024.25.3.931.
[36]
LIU J, LIU M L, GONG Y L, et al. Prediction of angiogenesis in extrahepatic cholangiocarcinoma using MRI-based machine learning[J/OL]. Front Oncol, 2023, 13: 1048311 [2025-01-01]. https://pubmed.ncbi.nlm.nih.gov/37274267/. DOI: 10.3389/fonc.2023.1048311.
[37]
ROMAIN B, ROUET L, OHAYON D, et al. Parameter estimation of perfusion models in dynamic contrast-enhanced imaging: a unified framework for model comparison[J]. Med Image Anal, 2017, 35: 360-374. DOI: 10.1016/j.media.2016.07.008.
[38]
KHALIFA F, SOLIMAN A, EL-BAZ A, et al. Models and methods for analyzing DCE-MRI: a review[J/OL]. Med Phys, 2014, 41(12): 124301 [2025-01-01]. https://pubmed.ncbi.nlm.nih.gov/25471985/. DOI: 10.1118/1.4898202.

PREV Feasibility study on the classification of liver multi-parameter MRI sequences based on deep learning
NEXT Prediction of regional lymph node status in rectal cancer with radiomics features based on deep learning segmented tumor area
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn