Share:
Share this content in WeChat
X
Clinical Article
Analysis of patellofemoral joint cartilage injuries and influencing factors in amateur marathon runners based on MRI and X-ray
RAN Chunyan  WANG Xiangao  XU Gaoqiang  LIU Junwei  WANG Dan  LI Xiaomei  HE Shengsheng  LIU Heng  ZHANG Tijiang 

Cite this article as: RAN C Y, WANG X G, XU G Q, et al. Analysis of patellofemoral joint cartilage injuries and influencing factors in amateur marathon runners based on MRI and X-ray[J]. Chin J Magn Reson Imaging, 2025, 16(10): 98-103. DOI:10.12015/issn.1674-8034.2025.10.015.


[Abstract] Objective To investigate the changes in T2 values of key knee joint structures in amateur marathon runners before and after a half-marathon, explore their correlations with clinical variables, and identify the influencing factors for patellofemoral joint (PFJ) cartilage injury.Materials and Methods Amateur runners participating in the Xinpu Half Marathon in Zunyi City in October 2024 were prospectively recruited all participants underwent MRI scans of the same-side knee joint using the same equipment and parameters twice: the first scan was performed within 1 week before the race (with no running exercise during this period), and the second scan was conducted within 24 hours after completing the half-marathon. Additionally, all participants received a weight-bearing knee joint X-ray examination. T2 mapping technique was used to measure the T2 values of the PFJ patellar cartilage (PC), medial meniscus (MM), lateral meniscus (ML), anterior cruciate ligament (ACL), posterior cruciate ligament (PCL), popliteus muscle (PM), and medial gastrocnemius (MG). PFJ cartilage was graded according to the Recht MRI grading standard, and knee osteoarthritis (KOA) was graded based on the Kellgren-Lawrence grading (KLG) system using weight-bearing knee X-ray findings. Wilcoxon non-parametric test and paired t-test were applied to analyze the differences in T2 values of the aforementioned structures before and after the race. Spearman and Pearson correlation analyses were used to examine the correlations between the differences in T2 values and age, body mass index (BMI), PFJ cartilage Recht grade, and KOA KLG. Multiple linear regression analysis was further conducted to screen the influencing factors for PFJ cartilage injury.Results After the half-marathon, the T2 values of the aforementioned knee joint structures were significantly higher than those before the race (all P < 0.001). The difference in PC T2 value showed a positive correlation with Recht grade (r = 0.84), KLG (r = 0.87), age (r = 0.62), and BMI (r = 0.82) (all P < 0.001). Multiple linear regression analysis indicated that BMI, and the average value of Recht grade and KOA KLG were risk factors for PFJ cartilage injury (regression coefficients: 0.715 and 2.389, respectively; all P < 0.001).Conclusions Among the population of amateur marathon runners, higher BMI, higher PFJ cartilage Recht grade, and higher KOA KLG can further increase the risk of PFJ cartilage injury.
[Keywords] half-marathon;running-related injury;patellar cartilage;magnetic resonance imaging;T2 mapping

RAN Chunyan1   WANG Xiangao1   XU Gaoqiang1   LIU Junwei1   WANG Dan1   LI Xiaomei1   HE Shengsheng2   LIU Heng1   ZHANG Tijiang1, 3*  

1 Department of Radiology, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China

2 Department of Radiology, People's Hospital of Wuchuan Autonomous County, Zunyi 564300, China

3 Department of Medical Technology, Bijie Medical College, Bijie 551700, China

Corresponding author: ZHANG T J, E-mail: tijzhang@163.com

Conflicts of interest   None.

Received  2025-05-22
Accepted  2025-10-10
DOI: 10.12015/issn.1674-8034.2025.10.015
Cite this article as: RAN C Y, WANG X G, XU G Q, et al. Analysis of patellofemoral joint cartilage injuries and influencing factors in amateur marathon runners based on MRI and X-ray[J]. Chin J Magn Reson Imaging, 2025, 16(10): 98-103. DOI:10.12015/issn.1674-8034.2025.10.015.

[1]
BRASCHLER L, NIKOLAIDIS P T, THUANY M, et al. Physiology and pathophysiology of marathon running: A narrative review[J/OL]. Phys Med Open, 2025, 11(1): 10 [2025-04-11]. https://pubmed.ncbi.nlm.nih.gov/39871014/. DOI: 10.1186/s40798-025-00810-3.
[2]
WILLWACHER S, KURZ M, ROBBIN J, et al. Running-related biomechanical risk factors for overuse injuries in distance runners: a systematic review considering injury specificity and the potentials for future research[J]. Sports Med, 2022, 52(8): 1863-1877. DOI: 10.1007/s40279-022-01666-3.
[3]
CLOOSTERMAN K L A, FOKKEMA T, DE VOS R J, et al. Educational online prevention programme (the SPRINT study) has no effect on the number of running-related injuries in recreational runners: a randomised-controlled trial[J]. Br J Sports Med, 2022, 56(12): 676-682. DOI: 10.1136/bjsports-2021-104539.
[4]
FRANCIS P, WHATMAN C, SHEERIN K, et al. The proportion of lower limb running injuries by gender, anatomical location and specific pathology: A systematic review[J]. J Sports Sci Med, 2019, 18(1): 21-31.
[5]
HSU C L, YANG C H, WANG J H, et al. Common running musculoskeletal injuries and associated factors among recreational gorge marathon runners: an investigation from 2013 to 2018 taroko gorge marathons[J/OL]. Int J Environ Res Public Health, 2020, 17(21): 8101 [2025-04-11]. https://pubmed.ncbi.nlm.nih.gov/33153163/. DOI: 10.3390/ijerph17218101.
[6]
ECK B L, YANG M R, ELIAS J J, et al. Quantitative MRI for evaluation of musculoskeletal disease: cartilage and muscle composition, joint inflammation, and biomechanics in osteoarthritis[J]. Invest Radiol, 2023, 58(1): 60-75. DOI: 10.1097/RLI.0000000000000909.
[7]
KIJOWSKI R. Standardization of compositional MRI of knee cartilage: why and how[J]. Radiology, 2021, 301(2): 433-434. DOI: 10.1148/radiol.2021211957.
[8]
HONG G B, LI S L. Development and future prospects of arthritis imaging[J]. Chin J Radiol, 2024, 58(11): 1286-1291. DOI: 10.3760/cma.j.cn112149-20240715-00407.
[9]
PAPROKI A, ENGSTROM C, STRUDWICK M, et al. Automated T2-mapping of the menisci from magnetic resonance images in patients with acute knee injury[J]. Acad Radiol, 2017, 24(10): 1295-1304. DOI: 10.1016/j.acra.2017.03.025.
[10]
LI J H, DENG X L, LI B Y, et al. Quantitative observation based on magnetic resonance imaging: the effects of marathon running on lumbar vertebrae, paraspinal muscles, and lumbar disc components[J]. Quant Imaging Med Surg, 2024, 14(12): 8811-8823. DOI: 10.21037/qims-24-1053.
[11]
CHENG Y, LI X K. Advanced quantitative magnetic resonance imaging of lower extremity muscle microtrauma after marathon: a mini review[J/OL]. Front Sports Act Living, 2024, 6: 1481731 [2025-04-15]. https://pubmed.ncbi.nlm.nih.gov/39534527/. DOI: 10.3389/fspor.2024.1481731.
[12]
YU H X, SHEN Y Y, ZHANG Y J, et al. Application progress of quantitative MRI technologies in evaluating knee cartilage of runners[J]. Int J Med Radiol, 2022, 45(5): 588-593. DOI: 10.19300/j.2022.Z19608.
[13]
DELLA ROSA T, GAULIN B, SCHWACH M, et al. Evaluation of the impact of ultra-trail running on knee cartilage using magnetic resonance imaging t2 mapping[J]. J Sports Med Phys Fitness, 2024, 64(12): 1321-1328. DOI: 10.23736/S0022-4707.24.15966-X.
[14]
ZHU D T, WU W H, YU W J, et al. Ultrashort echo time magnetization transfer imaging of knee cartilage and Meniscus after long-distance running[J]. Eur Radiol, 2023, 33(7): 4842-4854. DOI: 10.1007/s00330-023-09462-x.
[15]
LANGWORTHY M, DASA V, SPITZER A I. Knee osteoarthritis: disease burden, available treatments, and emerging options[J/OL]. Ther Adv Musculoskelet Dis, 2024, 16: 1759720X241273009 [2025-04-17]. https://pubmed.ncbi.nlm.nih.gov/39290780/. DOI: 10.1177/1759720X241273009.
[16]
THAHAKOYA R, ROACH K E, HAN M, et al. Association of cartilage T 1 ρ and T 2 relaxation time measurement with hip osteoarthritis progression: a 5-year longitudinal study using voxel-based relaxometry and Z-score normalization[J/OL]. Osteoarthr Cartil Open, 2024, 6(4): 100538 [2025-04-20]. https://pubmed.ncbi.nlm.nih.gov/39554476/. DOI: 10.1016/j.ocarto.2024.100538.
[17]
HARASYMOWICZ N S, HARISSA Z, RASHIDI N, et al. Injury and obesity differentially and synergistically induce dysregulation of synovial immune cells in osteoarthritis[J]. Ann Rheum Dis, 2025, 84(6): 1033-1044. DOI: 10.1016/j.ard.2025.03.001.
[18]
SRIDHAR M S, JARRETT C D, XEROGEANES J W, et al. Obesity and symptomatic osteoarthritis of the knee[J]. J Bone Joint Surg Br, 2012, 94(4): 433-440. DOI: 10.1302/0301-620X.94B4.27648.
[19]
KATZ J N, ARANT K R, LOESER R F. Diagnosis and treatment of hip and knee osteoarthritis: a review[J]. JAMA, 2021, 325(6): 568-578. DOI: 10.1001/jama.2020.22171.
[20]
LIU X Y, PU R J, LIANG J, et al. The value of T2 mapping texture features of 3.0 T MRI in grading cartilage injury of knee osteoarthritis[J]. Chin J Magn Reson Imag, 2021, 12(7): 34-38. DOI: 10.12015/issn.1674-8034.2021.07.007.
[21]
GAO Y L, LAN X C, WANG S, et al. Quantitative assessment of articular cartilage in the foot and ankle of amateur marathon runners by T2^(*)mapping and analysis of its related influencing factors[J]. Chin J Magn Reson Imag, 2025, 16(2): 94-99. DOI: 10.12015/issn.1674-8034.2025.02.015.
[22]
LIEBL H, JOSEPH G, NEVITT M C, et al. Early T2 changes predict onset of radiographic knee osteoarthritis: data from the osteoarthritis initiative[J]. Ann Rheum Dis, 2015, 74(7): 1353-1359. DOI: 10.1136/annrheumdis-2013-204157.
[23]
ANDRIACCHI T P, MÜNDERMANN A. The role of ambulatory mechanics in the initiation and progression of knee osteoarthritis[J]. Curr Opin Rheumatol, 2006, 18(5): 514-518. DOI: 10.1097/01.bor.0000240365.16842.4e.
[24]
STEFANIK J J, NIU J, GROSS K D, et al. Using magnetic resonance imaging to determine the compartmental prevalence of knee joint structural damage[J]. Osteoarthritis Cartilage, 2013, 21(5): 695-699. DOI: 10.1016/j.joca.2013.02.003.
[25]
SHU D B, CHEN F, GUO W T, et al. Acute changes in knee cartilage and Meniscus following long-distance running in habituate runners: a systematic review on studies using quantitative magnetic resonance imaging[J]. Skeletal Radiol, 2022, 51(7): 1333-1345. DOI: 10.1007/s00256-021-03943-0.
[26]
YOSHIMIZU R, NAKASE J, OKUDA M, et al. Ligamentization of the reconstructed ACL differs between the intraarticular and intraosseous regions: A quantitative assessment using UTE-T2* mapping[J/OL]. PLoS One, 2022, 17(7): e0271935 [2025-04-29]. https://pubmed.ncbi.nlm.nih.gov/35867680/. DOI: 10.1371/journal.pone.0271935.
[27]
HOOIJMANS M T, MONTE J R C, FROELING M, et al. Quantitative MRI reveals microstructural changes in the upper leg muscles after running a marathon[J]. J Magn Reson Imaging, 2020, 52(2): 407-417. DOI: 10.1002/jmri.27106.
[28]
FANG Y J, ZHU D T, WU W H, et al. Assessment of Achilles tendon changes after long-distance running using ultrashort echo time magnetization transfer MR imaging[J]. J Magn Reson Imaging, 2022, 56(3): 814-823. DOI: 10.1002/jmri.28072.
[29]
MIESZKOWSKI J, STANKIEWICZ B E, KOCHANOWICZ A, et al. Remote ischemic preconditioning reduces marathon-induced oxidative stress and decreases liver and heart injury markers in the serum[J/OL]. Front Physiol, 2021, 12: 731889 [2025-04-30]. https://pubmed.ncbi.nlm.nih.gov/34552508/. DOI: 10.3389/fphys.2021.731889.
[30]
YASUDA N, KATO S, HORITA N, et al. Synthetic extracellular volume fraction as an imaging biomarker of the myocardial interstitium without blood sampling: A systematic review and meta-analysis[J/OL]. J Cardiovasc Magn Reson, 2025, 27(1): 101889 [2025-05-01]. https://pubmed.ncbi.nlm.nih.gov/40139292/. DOI: 10.1016/j.jocmr.2025.101889.
[31]
SHU L, YANG X, HE H Y, et al. Morphological study of the vastus medialis oblique in recurrent patellar dislocation based on magnetic resonance images[J/OL]. BMC Med Imaging, 2021, 21(1): 3 [2025-05-06]. https://pubmed.ncbi.nlm.nih.gov/33407236/. DOI: 10.1186/s12880-020-00542-8.
[32]
COBURN S L, CROSSLEY K M, KEMP J L, et al. Association between hip muscle strength/function and hip cartilage defects in sub-elite football players with hip/groin pain[J]. Osteoarthr Cartil, 2024, 32(7): 943-951. DOI: 10.1016/j.joca.2024.03.121.
[33]
WANG W J, XU S L, ZEDLER M, et al. Tracking of time-dependent changes in concentric and eccentric quadriceps and hamstring torques and powers after a half-marathon[J]. J Phys Sci, 2025, 43(11): 1070-1075. DOI: 10.1080/02640414.2025.2489857.

PREV Study on predicting LVSI status in preoperative cervical cancer patients without lymph node metastasis using habitat radiomics based on DCE-MRI quantitative parametric maps
NEXT Mature cystic teratoma of renal sinus: One case report
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn