Share:
Share this content in WeChat
X
Review
Functional magnetic resonance imaging and machine learning in the application of brain network mechanisms and diagnosis and treatment of depression
WANG Siqi  SUN Siyu  ZHU Haijing  MI Weifeng  GAO Yujun  CUI Minghu 

Cite this article as: WANG S Q, SUN S Y, ZHU H J, et al. Functional magnetic resonance imaging and machine learning in the application of brain network mechanisms and diagnosis and treatment of depression[J]. Chin J Magn Reson Imaging, 2025, 16(10): 106-113. DOI:10.12015/issn.1674-8034.2025.10.017.


[Abstract] Depression is a prevalent and severe mental disorder characterized by a complex pathogenesis involving an interplay of genetic, environmental, and neurobiological factors. An accurate understanding of its pathogenesis and the implementation of precise diagnostic and therapeutic strategies are crucial. The advancement of functional magnetic resonance imaging (fMRI) and machine learning algorithms has introduced novel perspectives and methodologies for depression research, demonstrating significant potential in elucidating brain network mechanisms and facilitating diagnosis and treatment. However, this field continues to face numerous challenges, including significant data heterogeneity, insufficient standardization across multiple centers, limited investigation into the dynamic properties of brain networks, and the absence of established pathways for clinical translation. This paper systematically reviews the current research status of fMRI and machine learning in elucidating the mechanisms of brain networks in depression, as well as their clinical applications. It further highlights that future efforts should focus on standardizing multicenter data acquisition and processing, integrating multimodal neuroimaging information, and employing advanced models such as dynamic graph neural networks to capture the temporal evolution of brain networks. The ultimate goal is to provide a solid theoretical foundation and forward-looking direction for overcoming current research bottlenecks and constructing a precision diagnosis and treatment system for depression based on brain network analysis.
[Keywords] depression;functional magnetic resonance imaging;magnetic resonance imaging;machine learning;brain networks;diagnosis and treatment

WANG Siqi1, 2, 3   SUN Siyu1, 2, 4   ZHU Haijing1   MI Weifeng3*   GAO Yujun4*   CUI Minghu1*  

1 Department of Psychiatry, Binzhou Medical University Hospital, Binzhou 256603, China

2 Binzhou Medical University, Binzhou 256603, China

3 Institute of Mental Health, Peking University, Key Laboratory of Mental Health, National Health Commission of the People's Republic of China (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China

4 Department of Psychiatry, Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan 430063, China

Corresponding author: MI W F, E-mail: weifengmi@bjmu.edu.cn GAO Y J, E-mail: Yujun_Gao@whu.edu.cn CUI M H, E-mail: 825724247@qq.com

Conflicts of interest   None.

Received  2025-07-01
Accepted  2025-10-08
DOI: 10.12015/issn.1674-8034.2025.10.017
Cite this article as: WANG S Q, SUN S Y, ZHU H J, et al. Functional magnetic resonance imaging and machine learning in the application of brain network mechanisms and diagnosis and treatment of depression[J]. Chin J Magn Reson Imaging, 2025, 16(10): 106-113. DOI:10.12015/issn.1674-8034.2025.10.017.

[1]
HERRMAN H, PATEL V, KIELING C, et al. Time for united action on depression: a Lancet-World Psychiatric Association Commission[J]. Lancet, 2022, 399(10328): 957-1022. DOI: 10.1016/S0140-6736(21)02141-3.
[2]
GBD 2019 Diseases and Injuries Collaborators. Global burden of 369 diseases and injuries in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019[J]. Lancet, 2020, 396(10258): 1204-1222. DOI: 10.1016/S0140-6736(20)30925-9.
[3]
LIN H, XIANG X, HUANG J, et al. Abnormal degree centrality values as a potential imaging biomarker for major depressive disorder: A resting-state functional magnetic resonance imaging study and support vector machine analysis[J/OL]. Front Psychiatry, 2022, 13: 960294 [2025-07-01]. https://doi.org/10.3389/fpsyt.2022.960294. DOI: 10.3389/fpsyt.2022.960294.
[4]
MONROE S M, HARKNESS K L. Major Depression and Its Recurrences: Life Course Matters[J]. Annu Rev Clin Psychol, 2022, 18: 329-357. DOI: 10.1146/annurev-clinpsy-072220-021440.
[5]
SANTOMAURO D F, MANTILLA HERRERA A M, SHADID J, et al. Global prevalence and burden of depressive and anxiety disorders in 204 countries and territories in 2020 due to the COVID-19 pandemic[J]. Lancet, 2021, 398(10312): 1700-1712. DOI: 10.1016/S0140-6736(21)02143-7.
[6]
PARMAR U I, PURADKAR P, KADAM K, et al. An observational study to evaluate the awareness of drug treatment, prescription pattern, adverse drug reactions, and adherence in patients of major depressive disorder[J]. Perspect Clin Res, 2024, 15(2): 59-65. DOI: 10.4103/picr.picr_113_23.
[7]
GAO Y, GUO X, ZHONG Y, et al. Decreased dorsal attention network homogeneity as a potential neuroimaging biomarker for major depressive disorder[J]. J Affect Disord, 2023, 332: 136-142. DOI: 10.1016/j.jad.2023.03.080.
[8]
MCCARRON R M, SHAPIRO B, RAWLES J, et al. Depression[J/OL]. Ann Intern Med, 2021, 174(5): ITC65-ITC80 [2025-07-01]. https://doi.org/10.7326/AITC202105180. DOI: 10.7326/AITC202105180.
[9]
LI J M, JIANG C L. Biological Diagnosis of Depression: A Biomarker Panel from Several Nonspecial Indicators Instead of the Specific Biomarker(s)[J]. Neuropsychiatr Dis Treat, 2022, 18: 3067-3071. DOI: 10.2147/NDT.S393553.
[10]
ROALF D R, FIGEE M, OATHES D J. Elevating the field for applying neuroimaging to individual patients in psychiatry[J/OL]. Transl Psychiatry, 2024, 14(1): 87 [2025-07-01]. https://doi.org/10.1038/s41398-024-02781-7. DOI: 10.1038/s41398-024-02781-7.
[11]
PILMEYER J, HUIJBERS W, LAMERICHS R, et al. Functional MRI in major depressive disorder: A review of findings, limitations, and future prospects[J]. J Neuroimaging, 2022, 32(4): 582-595. DOI: 10.1111/jon.13011.
[12]
BHADRA S, KUMAR C J. An insight into diagnosis of depression using machine learning techniques: a systematic review[J]. Curr. Med. Res Opin, 2022, 38(5): 749-771. DOI: 10.1080/03007995.2022.2038487.
[13]
SPECHT K. Current Challenges in Translational and Clinical fMRI and Future Directions[J/OL]. Front Psychiatry, 2020, 10: 924 [2025-07-01]. https://doi.org/10.3389/fpsyt.2019.00924. DOI: 10.3389/fpsyt.2019.00924.
[14]
KOTOULA V, EVANS J W, PUNTURIERI C E, et al. Review: The use of functional magnetic resonance imaging (fMRI) in clinical trials and experimental research studies for depression[J/OL]. Front Neuroimaging, 2023, 2: 1110258 [2025-07-01]. https://doi.org/10.3389/fnimg.2023.1110258. DOI: 10.3389/fnimg.2023.1110258.
[15]
SHETTIGAR N, YANG C L, TU K C, et al. On The Biophysical Complexity of Brain Dynamics: An Outlook[J]. Dynamics, 2022, 2(2): 114-148. DOI: 10.3390/dynamics2020006.
[16]
JIN S, WANG J, HE Y. The brain network hub degeneration in Alzheimer's disease[J]. Biophys Rep, 2024, 10(4): 213-229. DOI: 10.52601/bpr.2024.230025.
[17]
KRAUS B T, PEREZ D, LADWIG Z, et al. Network variants are similar between task and rest states[J/OL]. Neuroimage, 2021, 229: 117743 [2025-07-01]. https://doi.org/10.1016/j.neuroimage.2021.117743. DOI: 10.1016/j.neuroimage.2021.117743.
[18]
CIARAMELLI E, BURIANOVÁ H, VALLESI A, et al. Functional Interplay Between Posterior Parietal Cortex and Hippocampus During Detection of Memory Targets and Non-targets[J/OL]. Front Neurosci, 2020, 14: 563768 [2025-07-01]. https://doi.org/10.3389/fnins.2020.563768. DOI: 10.3389/fnins.2020.563768.
[19]
MANOLIU A, RIEDL V, ZHERDIN A, et al. Aberrant dependence of default mode/central executive network interactions on anterior insular salience network activity in schizophrenia[J]. Schizophr Bull, 2014, 40(2): 428-437. DOI: 10.1093/schbul/sbt037.
[20]
XU M, ZHANG X, LI Y, et al. Identification of suicidality in patients with major depressive disorder via dynamic functional network connectivity signatures and machine learning[J/OL]. Transl Psychiatry, 2022, 12(1): 383 [2025-07-01]. https://doi.org/10.1038/s41398-022-02147-x. DOI: 10.1038/s41398-022-02147-x.
[21]
JALVING J, CAO Y, ZAVALA V M. Graph-based modeling and simulation of complex systems[J]. Comput Chem Eng, 2019, 125: 134-154. DOI: 10.1016/j.compchemeng.2019.03.009.
[22]
SHAW S B, MCKINNON M C, HEISZ J, et al. Dynamic task-linked switching between brain networks - A tri-network perspective[J/OL]. Brain Cogn, 2021, 151: 105725 [2025-07-01]. https://doi.org/10.1016/j.bandc.2021.105725. DOI: 10.1016/j.bandc.2021.105725.
[23]
JIANG Y. A theory of the neural mechanisms underlying negative cognitive bias in major depression[J/OL]. Front Psychiatry, 2024, 15(000): 12 [2025-07-01]. https://doi.org/10.3389/fpsyt.2024.1348474. DOI: 10.3389/fpsyt.2024.1348474.
[24]
JAVAHERIPOUR N, COLIC L, OPEL N, et al. Altered brain dynamic in major depressive disorder: state and trait features[J]. Transl Psychiatry, 2023, 13(1): 1-10. DOI: 10.1038/s41398-023-02540-0.
[25]
FANG D, ZHOU Z, XIONG Y, et al. Advancing Alzheimer's research: Radiomics visualization of the default mode network in cerebral perfusion imaging[J/OL]. J Appl Clin Med Phys, 2024, 25(5): e14368 [2025-07-01]. https://doi.org/10.1002/acm2.14368. DOI: 10.1002/acm2.14368.
[26]
K Q, D L, WHL P, et al. Using graph convolutional network to characterize individuals with major depressive disorder across multiple imaging sites[J/OL]. EBioMedicine, 2022, 78: 103977 [2025-07-01]. https://doi.org/10.1016/j.ebiom.2022.103977. DOI: 10.1016/j.ebiom.2022.103977.
[27]
ALFANO V, FEDERICO G, MELE G, et al. Brain Networks Involved in Depression in Patients with Frontotemporal Dementia and Parkinson's Disease: An Exploratory Resting-State Functional Connectivity MRI Study[J/OL]. Diagnostics (Basel), 2022, 12(4): 959 [2025-07-01]. https://doi.org/10.3390/diagnostics12040959. DOI: 10.3390/diagnostics12040959.
[28]
XU X, DAI J, CHEN Y, et al. Intrinsic connectivity of the prefrontal cortex and striato-limbic system respectively differentiate major depressive from generalized anxiety disorder[J]. Neuropsychopharmacology, 2021, 46(4): 791-798. DOI: 10.1038/s41386-020-00868-5.
[29]
LIU F X, WANG M Y, CHEN C L. Research progress on predicting the efficacy of repetitive transcranial magnetic stimulation for depression based on brain network functional connectivity[J]. Radiol Pract, 2023, 38: 349-355. DOI: 10.13609/j.cnki.1000-0313.2023.03.020
[30]
LUPPI A I, LYU D, STAMATAKIS E A. Core of consciousness: the default mode network as nexus of convergence and divergence in the human brain[J/OL]. Curr Opin Behav Sci, 2025, 65: 101545 [2025-07-01]. https://doi.org/10.1016/j.cobeha.2025.101545. DOI: 10.1016/j.cobeha.2025.101545.
[31]
SONKUSARE S, QIONG D, ZHAO Y, et al. Frequency dependent emotion differentiation and directional coupling in amygdala, orbitofrontal and medial prefrontal cortex network with intracranial recordings[J]. Mol Psychiatry, 2023, 28(4): 1636-1646. DOI: 10.1038/s41380-022-01883-2.
[32]
FENG L, WU D, MA S, et al. Resting-state functional connectivity of the cerebellum-cerebrum in older women with depressive symptoms[J/OL]. BMC Psychiatry, 2023, 23(1): 732 [2025-07-01]. https://doi.org/10.1186/s12888-023-05232-7. DOI: 10.1186/s12888-023-05232-7.
[33]
LI G, ROSSBACH K, ZHANG A, et al. Resting-state functional changes in the precuneus within first-episode drug-naive patients with MDD[J]. Neuropsychiatr Dis Treat, 2018, 14: 1991-1998. DOI: 10.2147/NDT.S168060.
[34]
ZHANG X, CAO J, HUANG Q, et al. Severity related neuroanatomical and spontaneous functional activity alteration in adolescents with major depressive disorder[J/OL]. Front Psychiatry, 2023, 14: 1157587 [2025-07-01]. https://doi.org/10.3389/fpsyt.2023.1157587. DOI: 10.3389/fpsyt.2023.1157587.
[35]
JORDAN T, DHAMALA M. Enhanced Dorsal Attention Network to Salience Network Interaction in Video Gamers During Sensorimotor Decision-Making Tasks[J]. Brain Connect, 2023, 13(2): 97-106. DOI: 10.1089/brain.2021.0193.
[36]
BUCHHOLZ F, MEFFERT M, BAZIN P L, et al. Highfield imaging of the subgenual anterior cingulate cortex in uni- and bipolar depression[J/OL]. Front Psychiatry, 2024, 15: 1462919 [2025-07-01]. https://doi.org/10.3389/fpsyt.2024.1462919. DOI: 10.3389/fpsyt.2024.1462919.
[37]
YI Z, XIA L, YI J, et al. Structural brain changes in the anterior cingulate cortex of major depressive disorder individuals with suicidal ideation: Evidence from the REST-meta-MDD project[J/OL]. Psychol. Med, 2025, 55: e24 [2025-07-01]. https://doi.org/10.1017/S0033291724003283. DOI: 10.1017/S0033291724003283.
[38]
WANG Q, TIAN S, ZHAO P, et al. Association Between Antidepressant Efficacy and Interactions of Three Core Depression-Related Brain Networks in Major Depressive Disorder[J/OL]. Front Psychiatry, 2022, 13: 862507 [2025-07-01]. https://doi.org/10.3389/fpsyt.2022.862507. DOI: 10.3389/fpsyt.2022.862507.
[39]
VEGA J N, TAYLOR W D, GANDELMAN J A, et al. Persistent Intrinsic Functional Network Connectivity Alterations in Middle-Aged and Older Women With Remitted Depression[J/OL]. Front Psychiatry, 2020, 11: 62 [2025-07-01]. https://doi.org/10.3389/fpsyt.2020.00062. DOI: 10.3389/fpsyt.2020.00062.
[40]
ZHONG J, XU J, WANG Z, et al. Changes in brain functional networks in remitted major depressive disorder: a six-month follow-up study[J/OL]. BMC Psychiatry, 2023, 23(1): 628 [2025-07-01]. https://doi.org/10.1186/s12888-023-05082-3. DOI: 10.1186/s12888-023-05082-3.
[41]
LIU B F, ZHAO T Y, LU W T, et al. Correlation between suicidal ideation and resting state functional magnetic resonance imaging in depression[J]. Chin J Neuro-Psychiatric Dis, 2023, 49(2): 97-102. DOI: 10.3969/j.issn.1002-0152.2023.02.005.
[42]
AGZIYART E A, ABBASIAN K, MAKOUEI S, et al. Investigating changes of functional brain networks in major depressive disorder by graph theoretical analysis of resting-state fMRI[J/OL]. Psychiatry Res Neuroimaging, 2024, 344: 111880 [2025-07-01]. https://doi.org/10.1016/j.pscychresns.2024.111880. DOI: 10.1016/j.pscychresns.2024.111880.
[43]
WON J, CALLOW D D, PENA G S, et al. Evidence for exercise-related plasticity in functional and structural neural network connectivity[J]. Neurosci Biobehav Rev, 2021, 131: 923-940. DOI: 10.1016/j.neubiorev.2021.10.013.
[44]
H T, Z W, Y M, et al. Neural mechanisms underlying cognitive impairment in depression and cognitive benefits of exercise intervention[J/OL]. Behav Brain Res, 2025, 476: 115218 [2025-07-01]. https://doi.org/10.1016/j.bbr.2024.115218. DOI: 10.1016/j.bbr.2024.115218.
[45]
DAI Q, YIN X, HUANG J, et al. Default Model Network Mechanism in Current and Remitted Depression[J]. Neuropsychiatry, 2018, 8(1): 126-137. DOI: 10.4172/Neuropsychiatry.1000333.
[46]
ALBERT K M, POTTER G G, BOYD B D, et al. Brain network functional connectivity and cognitive performance in major depressive disorder[J]. J Psychiatr Res, 2019, 110: 51-56. DOI: 10.1016/j.jpsychires.2018.11.020.
[47]
LEISMAN G, MELILLO R. Front and center: Maturational dysregulation of frontal lobe functional neuroanatomic connections in attention deficit hyperactivity disorder[J/OL]. Front Neuroanat, 2022, 16: 936025 [2025-07-01]. https://doi.org/10.3389/fnana.2022.936025. DOI: 10.3389/fnana.2022.936025.
[48]
CÎRSTIAN R, PILMEYER J, BERNAS A, et al. Objective biomarkers of depression: A study of Granger causality and wavelet coherence in resting-state fMRI[J]. J Neuroimaging, 2023, 33(3): 404-414. DOI: 10.1111/jon.13085.
[49]
TOSONI A, CAPOTOSTO P, BALDASSARRE A, et al. Neuroimaging evidence supporting a dual-network architecture for the control of visuospatial attention in the human brain: a mini review[J/OL]. Front Hum Neurosci, 2023, 17: 1250096 [2025-07-01]. https://doi.org/10.3389/fnhum.2023.1250096. DOI: 10.3389/fnhum.2023.1250096.
[50]
LUO L, LEI X, ZHU C, et al. Decreased Connectivity in Precuneus of the Ventral Attentional Network in First-Episode, Treatment-Naïve Patients With Major Depressive Disorder: A Network Homogeneity and Independent Component Analysis[J/OL]. Front. Psychiatry, 2022, 13: 925253 [2025-07-01]. https://doi.org/10.3389/fpsyt.2022.925253. DOI: 10.3389/fpsyt.2022.925253.
[51]
XIE S H, GAO Y, QIAO P F, et al. A study on functional connection of default net work in resting-state fMRI in adolescent depression[J]. J Inner Mongolia Med Univ, 2021, 43(2): 129-131, 164. DOI: 10.16343/j.cnki.issn.2095-512x.2021.02.004.
[52]
WU F, LU Q, KONG Y, et al. A Comprehensive Overview of the Role of Visual Cortex Malfunction in Depressive Disorders: Opportunities and Challenges[J]. Neurosci Bull, 2023, 39(9): 1426-1438. DOI: 10.1007/s12264-023-01052-7.
[53]
PATEL M J, KHALAF A, AIZENSTEIN H J. Studying depression using imaging and machine learning methods[J]. Neuroimage Clin, 2016, 10: 115-123. DOI: 10.1016/j.nicl.2015.11.003.
[54]
MANSOOR M A, ANSARI K H. Advancing Early Detection of Major Depressive Disorder: A Comparative Analysis of AI Models Using Multi-Site Functional MRI Data[J/OL]. medRxiv, 2024: 2024.08.13.24311933 [2025-10-08]. https://www.medrxiv.org/content/10.1101/2024.08.13.24311933v1. DOI: 10.2196/65417
[55]
LIN C, LEE S H, HUANG C M, et al. Automatic diagnosis of late-life depression by 3D convolutional neural networks and cross-sample Entropy analysis from resting-state fMRI[J]. Brain Imaging Behav, 2023, 17(1): 125-135. DOI: 10.1007/s11682-022-00748-0.
[56]
WANG Q, HE C, WANG Z, et al. Connectomics-based resting-state functional network alterations predict suicidality in major depressive disorder[J/OL]. Transl Psychiatry, 2023, 13(1): 365 [2025-07-01]. https://doi.org/10.1038/s41398-023-02655-4. DOI: 10.1038/s41398-023-02655-4.
[57]
XIA F, REN J, LIU L, et al. A machine learning-based depression risk prediction model for healthy middle-aged and older adult people based on data from the China health and aging tracking study[J/OL]. Front Public Health, 2025, 13: 1515094 [2025-07-01]. https://doi.org/10.3389/fpubh.2025.1515094. DOI: 10.3389/fpubh.2025.1515094.
[58]
HIRSHFELD-BECKER D R, GABRIELI J D E, SHAPERO B G, et al. Intrinsic Functional Brain Connectivity Predicts Onset of Major Depression Disorder in Adolescence: A Pilot Study[J]. Brain Connect, 2019, 9(5): 388-398. DOI: 10.1089/brain.2018.0646.
[59]
TEUTENBERG L, STEIN F, THOMAS-ODENTHAL F, et al. Machine learning-based prediction of illness course in major depression: The relevance of risk factors[J]. J Affect Disord, 2025, 374: 513-522. DOI: 10.1016/j.jad.2025.01.060.
[60]
NTAM V A, HUEBNER T, STEFFENS M, et al. Machine learning approaches in the therapeutic outcome prediction in major depressive disorder: a systematic review[J/OL]. Front Psychiatry, 2025, 16: 1588963 [2025-07-01]. https://doi.org/10.3389/fpsyt.2025.1588963. DOI: 10.3389/fpsyt.2025.1588963.
[61]
SAJJADIAN M, LAM R W, MILEV R, et al. Machine learning in the prediction of depression treatment outcomes: a systematic review and meta-analysis[J]. Psychol Med, 2021, 51(16): 2742-2751. DOI: 10.1017/S0033291721003871.
[62]
KOMATSU H, WATANABE E, FUKUCHI M. Psychiatric Neural Networks and Precision Therapeutics by Machine Learning[J/OL]. Biomedicines, 2021, 9(4): 403 [2025-07-01]. https://doi.org/10.3390/biomedicines9040403. DOI: 10.3390/biomedicines9040403.
[63]
DUAN J, LI Y, ZHANG X, et al. Predicting treatment response in adolescents and young adults with major depressive episodes from fMRI using graph isomorphism network[J/OL]. Neuroimage Clin, 2023, 40: 103534 [2025-07-01]. https://doi.org/10.1016/j.nicl.2023.103534. DOI: 10.1016/j.nicl.2023.103534.
[64]
GOERNER F L, CLARKE G D. Measuring signal-to-noise ratio in partially parallel imaging MRI[J]. Med Phys, 2011, 38(9): 5049-5057. DOI: 10.1118/1.3618730.
[65]
XUE Z H, WANG Y F, ZHAO Y B, et al. Magnetic resonance imaging quality control and parameter optimization[J]. Chin J Magn Reson Imag, 2013, 4(6): 441-444. DOI: 10.3969/j.issn.1674-8034.2013.06.009.
[66]
BOTVINIK-NEZER R, HOLZMEISTER F, CAMERER C F, et al. Variability in the analysis of a single neuroimaging dataset by many teams[J]. Nature, 2020, 582(7810): 84-88. DOI: 10.1038/s41586-020-2314-9.
[67]
FRISTON K J, WILLIAMS S, HOWARD R, et al. Movement-related effects in fMRI time-series[J]. Magn Reson Med, 1996, 35(3): 346-355. DOI: 10.1002/mrm.1910350312.
[68]
YAN C G, CHEUNG B, KELLY C, et al. A comprehensive assessment of regional variation in the impact of head micromovements on functional connectomics[J]. Neuroimage, 2013, 76: 183-201. DOI: 10.1016/j.neuroimage.2013.03.004.
[69]
LI J, KONG R, LIÉGEOIS R, et al. Global signal regression strengthens association between resting-state functional connectivity and behavior[J]. Neuroimage, 2019, 196: 126-141. DOI: 10.1016/j.neuroimage.2019.04.016.
[70]
DANSEREAU C, BENHAJALI Y, RISTERUCCI C, et al. Statistical power and prediction accuracy in multisite resting-state fMRI connectivity[J]. Neuroimage, 2017, 149: 220-232. DOI: 10.1016/j.neuroimage.2017.01.072.
[71]
WANG Y W, CHEN X, YAN C G. Comprehensive evaluation of harmonization on functional brain imaging for multisite data-fusion[J/OL]. Neuroimage, 2023, 274: 120089 [2025-07-01]. https://doi.org/10.1016/j.neuroimage.2023.120089. DOI: 10.1016/j.neuroimage.2023.120089.
[72]
GAO S, CALHOUN V D, SUI J. Machine learning in major depression: From classification to treatment outcome prediction[J]. CNS Neurosci Ther, 2018, 24(11): 1037-1052. DOI: 10.1111/cns.13048.
[73]
NIU H, LI W, WANG G, et al. Performances of whole-brain dynamic and static functional connectivity fingerprinting in machine learning-based classification of major depressive disorder[J/OL]. Front Psychiatry, 2022, 13: 973921 [2025-07-01]. https://doi.org/10.3389/fpsyt.2022.973921. DOI: 10.3389/fpsyt.2022.973921.

PREV Mature cystic teratoma of renal sinus: One case report
NEXT Advances in the application of magnetic resonance imaging and repetitive transcranial magnetic stimulation for generalized anxiety disorder
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn