Share:
Share this content in WeChat
X
Review
Advances in the application of magnetic resonance imaging and repetitive transcranial magnetic stimulation for generalized anxiety disorder
ZHANG Yuhang  LIU Bingqian  WANG Meiyun 

Cite this article as: ZHANG Y H, LIU B Q, WANG M Y. Advances in the application of magnetic resonance imaging and repetitive transcranial magnetic stimulation for generalized anxiety disorder[J]. Chin J Magn Reson Imaging, 2025, 16(10): 114-118, 136. DOI:10.12015/issn.1674-8034.2025.10.018.


[Abstract] Generalized anxiety disorder (GAD), a psychiatric condition with a relatively high global prevalence, is one of the most common forms of anxiety disorders. Repetitive transcranial magnetic stimulation (rTMS), a non-invasive brain stimulation technique, has demonstrated potential in the treatment of GAD. This review summarizes research on aberrant functional connectivity in the brains of GAD patients using MRI, as well as the role of MRI in guiding rTMS therapy, elucidating its neural mechanisms, and evaluating treatment efficacy. Current limitations are discussed, and future research directions are proposed, highlighting the integration of MRI with rTMS to offer novel insights for personalized treatment of GAD.
[Keywords] generalized anxiety disorder;magnetic resonance imaging;repetitive transcranial magnetic stimulation;functional connectivity;medical imaging

ZHANG Yuhang1, 2   LIU Bingqian1, 2   WANG Meiyun2, 3*  

1 Department of Medical Imaging, Henan University People's Hospital, Zhengzhou 450003, China

2 Department of Medical Imaging, Henan Provincial People's Hospital, Zhengzhou 450003, China

3 Biomedical Research Institute, Henan Academy of Sciences, Zhengzhou 450046, China

Corresponding author: WANG M Y, E-mail: mywang@zzu.edu.cn

Conflicts of interest   None.

Received  2025-07-04
Accepted  2025-10-10
DOI: 10.12015/issn.1674-8034.2025.10.018
Cite this article as: ZHANG Y H, LIU B Q, WANG M Y. Advances in the application of magnetic resonance imaging and repetitive transcranial magnetic stimulation for generalized anxiety disorder[J]. Chin J Magn Reson Imaging, 2025, 16(10): 114-118, 136. DOI:10.12015/issn.1674-8034.2025.10.018.

[1]
PENG J, YUAN S, WEI Z, et al. Temporal network of experience sampling methodology identifies sleep disturbance as a central symptom in generalized anxiety disorder[J/OL]. BMC Psychiatry, 2024, 24(1): 241 [2025-06-30]. https://pubmed.ncbi.nlm.nih.gov/38553683/. DOI: 10.1186/s12888-024-05698-z.
[2]
DEMARTINI J, PATEL G, FANCHER T L. Generalized Anxiety Disorder[J]. Ann Intern Med, 2019, 170(7): Itc49-itc64. DOI: 10.7326/aitc201904020.
[3]
FOLDES-BUSQUE G, DIONNE C E, TURCOTTE S, et al. Epidemiology and prognostic implications of panic disorder and generalized anxiety disorder in patients with coronary artery disease: rationale and design for a longitudinal cohort study[J/OL]. BMC Cardiovasc Disord, 2021, 21(1): 26 [2025-06-30]. https://pubmed.ncbi.nlm.nih.gov/33435888/. DOI: 10.1186/s12872-021-01848-3.
[4]
ANSARA E D. Management of treatment-resistant generalized anxiety disorder[J]. Ment Health Clin, 2020, 10(6): 326-334. DOI: 10.9740/mhc.2020.11.326.
[5]
PARIKH T K, STRAWN J R, WALKUP J T, et al. Repetitive Transcranial Magnetic Stimulation for Generalized Anxiety Disorder: A Systematic Literature Review and Meta-Analysis[J]. Int J Neuropsychopharmacol, 2022, 25(2): 144-146. DOI: 10.1093/ijnp/pyab077.
[6]
FITZSIMMONS S, OOSTRA E, POSTMA T S, et al. Repetitive Transcranial Magnetic Stimulation-Induced Neuroplasticity and the Treatment of Psychiatric Disorders: State of the Evidence and Future Opportunities[J]. Biol Psychiatry, 2024, 95(6): 592-600. DOI: 10.1016/j.biopsych.2023.11.016.
[7]
WANG Y X , KANG X N, RAN B Y, et al. Progress of Functional Magnetic Resonance Mechanism of Acupuncture in theTreatment of Generalized Anxiety Disorder[J]. Guiding Journal of Traditional Chinese Medicine and Pharmacology, 2022, 28(12): 227-232. DOI: 10.13862/j.cn43-1446/r.2022.12.047.
[8]
WU C, FERREIRA F, FOX M, et al. Clinical applications of magnetic resonance imaging based functional and structural connectivity[J/OL]. Neuroimage, 2021, 244: 118649 [2025-06-30]. https://pubmed.ncbi.nlm.nih.gov/34648960/. DOI: 10.1016/j.neuroimage.2021.118649.
[9]
TANG Q, ZHANG G, FAN Y S, et al. An investigation into the abnormal dynamic connection mechanism of generalized anxiety disorders based on non-homogeneous Markov models[J]. J Affect Disord, 2024, 354: 500-508. DOI: 10.1016/j.jad.2024.03.038.
[10]
LI Q, ZHANG T, MENG J, et al. Abnormal hemispheric specialization and inter-hemispheric functional cooperation in generalized anxiety disorder[J/OL]. Behav Brain Res, 2023, 455: 114660 [2025-06-30]. https://pubmed.ncbi.nlm.nih.gov/37690701/. DOI: 10.1016/j.bbr.2023.114660.
[11]
SMALLWOOD J, BERNHARDT B C, LEECH R, et al. The default mode network in cognition: a topographical perspective[J]. Nat Rev Neurosci, 2021, 22(8): 503-513. DOI: 10.1038/s41583-021-00474-4.
[12]
HE W, XIONG H, FANG J, et al. Impact of self-designed Ningxin Anshen Decoction on the resting-state network functional connectivity in patients with mild to moderate generalized anxiety disorders[J]. Ann Palliat Med, 2021, 10(2): 1313-1324. DOI: 10.21037/apm-20-300.
[13]
MENON V. 20 years of the default mode network: A review and synthesis[J]. Neuron, 2023, 111(16): 2469-2487. DOI: 10.1016/j.neuron.2023.04.023.
[14]
KATSUMI A, IWATA S, TSUKIURA T. Roles of the Default Mode Network in Different Aspects of Self-representation When Remembering Social Autobiographical Memories[J]. J Cogn Neurosci, 2024, 36(6): 1021-1036. DOI: 10.1162/jocn_a_02143.
[15]
SAMBUCO N. Cognition, emotion, and the default mode network[J/OL]. Brain Cogn, 2024, 182: 106229 [2025-06-30].https://pubmed.ncbi.nlm.nih.gov/39481259/. DOI: 10.1016/j.bandc.2024.106229.
[16]
LI W, CUI H, LI H, et al. Specific and common functional connectivity deficits in drug-free generalized anxiety disorder and panic disorder: A data-driven analysis[J/OL]. Psychiatry Res, 2023, 319: 114971 [2025-06-30]. https://pubmed.ncbi.nlm.nih.gov/36459805/. DOI: 10.1016/j.psychres.2022.114971.
[17]
YAHYA K. The basal ganglia corticostriatal loops and conditional learning[J]. Rev Neurosci, 2021, 32(2): 181-190. DOI: 10.1515/revneuro-2020-0047.
[18]
SUN Y, TAKEHARA-NISHIUCHI K. The medial prefrontal cortex leaves the hippocampus when it prepares for the future[J/OL]. Sci Prog, 2024, 107(2): 368504241261833 [2025-06-30]. https://pubmed.ncbi.nlm.nih.gov/38872470/. DOI: 10.1177/00368504241261833.
[19]
ELSTON T W, WALLIS J D. Context-dependent decision-making in the primate hippocampal-prefrontal circuit[J]. Nat Neurosci, 2025, 28(2): 374-382. DOI: 10.1038/s41593-024-01839-5.
[20]
STOLL F M, RUDEBECK P H. Preferences reveal dissociable encoding across prefrontal-limbic circuits[J]. Neuron, 2024, 112(13): 2241-2256. DOI: 10.1016/j.neuron.2024.03.020.
[21]
LUO Y, LI J, ZHANG Y, et al. The scalp prefrontal-limbic functional connectivity moderates stress-related rumination effects on stress recovery[J/OL]. Psychophysiology, 2024, 61(3): e14462 [2025-06-30]. https://pubmed.ncbi.nlm.nih.gov/37990390/. DOI: 10.1111/psyp.14462.
[22]
SHAN X, YAN H, LI H, et al. Abnormal causal connectivity of prefrontal-limbic circuit by structural deficits in drug-naive anxiety disorders[J]. J Psychiatr Res, 2023, 163: 14-23. DOI: 10.1016/j.jpsychires.2023.05.010.
[23]
DU Y, LI H, XIAO H, et al. Illness Severity Moderated Association Between Trait Anxiety and Amygdala-Based Functional Connectivity in Generalized Anxiety Disorder[J/OL]. Front Behav Neurosci, 2021, 15: 637426 [2025-06-30]. https://pubmed.ncbi.nlm.nih.gov/33867949/. DOI: 10.3389/fnbeh.2021.637426.
[24]
BECKMANN F E, GRUBER H, SEIDENBECHER S, et al. Specific alterations of resting-state functional connectivity in the triple network related to comorbid anxiety in major depressive disorder[J]. Eur J Neurosci, 2024, 59(7): 1819-1832. DOI: 10.1111/ejn.16249.
[25]
HAO X, MA M, MENG F, et al. Diminished attention network activity and heightened salience-default mode transitions in generalized anxiety disorder: Evidence from resting-state EEG microstate analysis[J]. J Affect Disord, 2025, 373: 227-236. DOI: 10.1016/j.jad.2024.12.095.
[26]
LI R, SHEN F, SUN X, et al. Dissociable salience and default mode network modulation in generalized anxiety disorder: a connectome-wide association study[J]. Cereb Cortex, 2023, 33(10): 6354-6365. DOI: 10.1093/cercor/bhac509.
[27]
DUFOR T, LOHOF A M, SHERRARD R M. Magnetic Stimulation as a Therapeutic Approach for Brain Modulation and Repair: Underlying Molecular and Cellular Mechanisms[J/OL]. Int J Mol Sci, 2023, 24(22): 16456 [2025-06-30]. https://pubmed.ncbi.nlm.nih.gov/38003643/. DOI: 10.3390/ijms242216456.
[28]
SHIROTA Y, UGAWA Y. Transcranial magnetic stimulation[J/OL]. Current Opinion in Behavioral Sciences, 2024, 58: 101396 [2025-06-30]. https://www.sciencedirect.com/science/article/pii/S2352154624000470. DOI: 10.1016/j.cobeha.2024.101396.
[29]
ADDICOTT M A, YOUNG J R, APPELBAUM L G. Effects of Transcranial Magnetic Stimulation on Cognitive-Affective Task-Based Functional Connectivity[J]. Brain Connect, 2025, 15(4): 153-161. DOI: 10.1089/brain.2024.0095.
[30]
BAI Z, ZHANG J, FONG K N K. Effects of transcranial magnetic stimulation in modulating cortical excitability in patients with stroke: a systematic review and meta-analysis[J/OL]. J Neuroeng Rehabil, 2022, 19(1): 24 [2025-06-30]. https://pubmed.ncbi.nlm.nih.gov/35193624/. DOI: 10.1186/s12984-022-00999-4.
[31]
YOUNG I M, TAYLOR H M, NICHOLAS P J, et al. An agile, data-driven approach for target selection in rTMS therapy for anxiety symptoms: Proof of concept and preliminary data for two novel targets[J/OL]. Brain Behav, 2023, 13(5): e2914 [2025-06-30]. https://pubmed.ncbi.nlm.nih.gov/36949668/. DOI: 10.1002/brb3.2914.
[32]
TANG S J, HOLLE J, MOR S, et al. Improvements in Sleep Quality in Patients With Major Depressive and Generalized Anxiety Disorders Treated With Individualized, Parcel-Guided Transcranial Magnetic Stimulation[J/OL]. Brain Behav, 2024, 14(10): e70088 [2025-06-30]. https://pubmed.ncbi.nlm.nih.gov/39415644/. DOI: 10.1002/brb3.70088.
[33]
FERRRAZ I, FILHO M F, FERRARIS A. P092 transcranial magnetic stimulation versus impulsivity: literature review[J/OL]. Neuromodulation: Technology at the Neural Interface, 2025, 28(1, Supplement): S216 [2025-06-30]. https://www.sciencedirect.com/science/article/pii/S1094715924010420. DOI: 10.1016/j.neurom.2024.09.329.
[34]
LUK K Y, OUYANG H X, PANG M Y C. Low-Frequency rTMS over Contralesional M1 Increases Ipsilesional Cortical Excitability and Motor Function with Decreased Interhemispheric Asymmetry in Subacute Stroke: A Randomized Controlled Study[J/OL]. Neural Plast, 2022, 2022: 3815357 [2025-06-30]. https://pubmed.ncbi.nlm.nih.gov/35035473/. DOI: 10.1155/2022/3815357.
[35]
CAPARELLI E C, ABULSEOUD O A, GU H, et al. Low frequency repetitive transcranial magnetic stimulation to the right dorsolateral prefrontal cortex engages thalamus, striatum, and the default mode network[J/OL]. Front Neurosci, 2022, 16: 997259 [2025-06-30]. https://pubmed.ncbi.nlm.nih.gov/36248660/. DOI: 10.3389/fnins.2022.997259.
[36]
WU J, ZHUANG S, ZHANG X, et al. Objective sleep enhancement in Parkinson's disease: A sham-controlled trial of low-frequency repetitive transcranial magnetic stimulation over the right dorsolateral prefrontal cortex[J/OL]. Parkinsonism Relat Disord, 2024, 126: 107050 [2025-06-30]. https://pubmed.ncbi.nlm.nih.gov/38986305/. DOI: 10.1016/j.parkreldis.2024.107050.
[37]
SZÜCS-BENCZE L, VÉKONY T, PESTHY O, et al. Modulating Visuomotor Sequence Learning by Repetitive Transcranial Magnetic Stimulation: What Do We Know So Far?[J/OL]. J Intell, 2023, 11(10): 201 [2025-06-30]. https://pubmed.ncbi.nlm.nih.gov/37888433/. DOI: 10.3390/jintelligence11100201.
[38]
WANG T, LIU X, WU X, et al. High-frequency rTMS of the left dorsolateral prefrontal cortex for post-stroke depression: A systematic review and meta-analysis[J]. Clin Neurophysiol, 2024, 157: 130-141. DOI: 10.1016/j.clinph.2023.11.019.
[39]
LI Y, PANG J, WANG J, et al. High-frequency rTMS over the left DLPFC improves the response inhibition control of young healthy participants: an ERP combined (1)H-MRS study[J/OL]. Front Psychol, 2023, 14: 1144757 [2025-06-30]. https://pubmed.ncbi.nlm.nih.gov/37275686/. DOI: 10.3389/fpsyg.2023.1144757.
[40]
DUNLOP K, NESTOR S. Comparing DLPFC 10 Hz and theta burst stimulation using interleaved TMS/fMRI[J/OL]. Brain Stimulation, 2023, 16(1): 178 [2025-06-30]. https://www.sciencedirect.com/science/article/pii/S1935861X23001936. DOI: 10.1016/j.brs.2023.01.191.
[41]
GOGULSKI J, ROSS J M, TALBOT A, et al. Personalized Repetitive Transcranial Magnetic Stimulation for Depression[J]. Biol Psychiatry Cogn Neurosci Neuroimaging, 2023, 8(4): 351-360. DOI: 10.1016/j.bpsc.2022.10.006.
[42]
OATHES D J, BALDERSTON N L, KORDING K P, et al. Combining transcranial magnetic stimulation with functional magnetic resonance imaging for probing and modulating neural circuits relevant to affective disorders[J/OL]. Wiley Interdiscip Rev Cogn Sci, 2021, 12(4): e1553 [2025-06-30]. https://pubmed.ncbi.nlm.nih.gov/33470055/. DOI: 10.1002/wcs.1553.
[43]
XU M, LI B, WANG S, et al. The brain in chronic insomnia and anxiety disorder: a combined structural and functional fMRI study[J/OL]. Front Psychiatry, 2024, 15: 1364713 [2025-06-30]. https://pubmed.ncbi.nlm.nih.gov/38895035/. DOI: 10.3389/fpsyt.2024.1364713.
[44]
HAN Y, YAN H, SHAN X, et al. Shared and distinctive neural substrates of generalized anxiety disorder with or without depressive symptoms and their roles in prognostic prediction[J]. J Affect Disord, 2024, 348: 207-217. DOI: 10.1016/j.jad.2023.12.067.
[45]
MADONNA D, DELVECCHIO G, SOARES J C, et al. Structural and functional neuroimaging studies in generalized anxiety disorder: a systematic review[J]. Braz J Psychiatry, 2019, 41(4): 336-362. DOI: 10.1590/1516-4446-2018-0108.
[46]
NICODEMUS N E, PACKHAM H R, JORDAN S E, et al. Utilizing fMRI correlates of cognitive reappraisal to identify additional TMS targets for the treatment of GAD[J/OL]. Brain Stimulation, 2018, 11(6): e18 [2025-06-30]. https://www.sciencedirect.com/science/article/pii/S1935861X18302390. DOI: 10.1016/j.brs.2018.07.035.
[47]
HUANG Z, LI Y, BIANCHI M T, et al. Repetitive transcranial magnetic stimulation of the right parietal cortex for comorbid generalized anxiety disorder and insomnia: A randomized, double-blind, sham-controlled pilot study[J]. Brain Stimul, 2018, 11(5): 1103-1109. DOI: 10.1016/j.brs.2018.05.016.
[48]
HAN X, ZHU Z, LUAN J, et al. Effects of repetitive transcranial magnetic stimulation and their underlying neural mechanisms evaluated with magnetic resonance imaging-based brain connectivity network analyses[J/OL]. Eur J Radiol Open, 2023, 10: 100495 [2025-06-30]. https://pubmed.ncbi.nlm.nih.gov/37396489/. DOI: 10.1016/j.ejro.2023.100495.
[49]
ZENG S, TANG C, SU M, et al. Infralow-frequency transcranial magnetic stimulation as a therapy for generalized anxiety disorder: A randomized clinical trial[J/OL]. Compr Psychiatry, 2022, 117: 152332 [2025-06-30]. https://pubmed.ncbi.nlm.nih.gov/35763873/. DOI: 10.1016/j.comppsych.2022.152332.
[50]
SONG P, TONG H, ZHANG L, et al. Repetitive Transcranial Magnetic Stimulation Modulates Frontal and Temporal Time-Varying EEG Network in Generalized Anxiety Disorder: A Pilot Study[J/OL]. Front Psychiatry, 2021, 12: 779201 [2025-06-30]. https://pubmed.ncbi.nlm.nih.gov/35095597/. DOI: 10.3389/fpsyt.2021.779201.
[51]
DUAN N, ZHANG Y, WANG S, et al. Evaluating the efficacy and acceptability of non-invasive brain stimulation for generalized anxiety disorder: a systematic review and network meta-analysis[J/OL]. Psychiatry Res Neuroimaging, 2025, 349: 111989 [2025-06-30]. https://pubmed.ncbi.nlm.nih.gov/40203547/. DOI: 10.1016/j.pscychresns.2025.111989.
[52]
CILLI S L, GOLDBERG M A, COSMO C, et al. Transcranial Magnetic Stimulation for Posttraumatic Stress Disorder and Generalized Anxiety Disorder[J/OL]. Curr Top Behav Neurosci, 2024 [2025-06-30]. https://pubmed.ncbi.nlm.nih.gov/39505816/. DOI: 10.1007/7854_2024_540.
[53]
LEUCHTER M, CITRENBAUM C, WILSON A, et al. Agreeing to disagree: inter-subject variability of mood rating scales during rtms treatment of depression[J/OL]. Brain Stimulation, 2023, 16(1): 324 [2025-06-30]. https://www.sciencedirect.com/science/article/pii/S1935861X2300606X. DOI: 10.1016/j.brs.2023.01.604.
[54]
DIEFENBACH G J, BRAGDON L B, ZERTUCHE L, et al. Repetitive transcranial magnetic stimulation for generalised anxiety disorder: a pilot randomised, double-blind, sham-controlled trial[J]. Br J Psychiatry, 2016, 209(3): 222-228. DOI: 10.1192/bjp.bp.115.168203.
[55]
LUTTENBACHER I, PHILLIPS A, KAZEMI R, et al. Transdiagnostic role of glutamate and white matter damage in neuropsychiatric disorders: A Systematic Review[J]. J Psychiatr Res, 2022, 147: 324-348. DOI: 10.1016/j.jpsychires.2021.12.042.
[56]
ACEVES-SERRANO L, NEVA J L, DOUDET D J. Insight Into the Effects of Clinical Repetitive Transcranial Magnetic Stimulation on the Brain From Positron Emission Tomography and Magnetic Resonance Imaging Studies: A Narrative Review[J/OL]. Front Neurosci, 2022, 16: 787403 [2025-06-30]. https://pubmed.ncbi.nlm.nih.gov/35264923/. DOI: 10.3389/fnins.2022.787403.
[57]
CHEN T, LIU W B, ZHU S J, et al. Differential modulation of pain and associated anxiety by GABAergic neuronal circuits in the lateral habenula[J/OL]. Proc Natl Acad Sci U S A, 2024, 121(48): e2409443121 [2025-06-30]. https://pubmed.ncbi.nlm.nih.gov/35264923/. DOI: 10.1073/pnas.2409443121.
[58]
ARORA I, MAL P, ARORA P, et al. GABAergic implications in anxiety and related disorders[J/OL]. Biochem Biophys Res Commun, 2024, 724: 150218 [2025-06-30]. https://pubmed.ncbi.nlm.nih.gov/38865810/. DOI: 10.1016/j.bbrc.2024.150218.
[59]
ZACHAROPOULOS G, SELLA F, COHEN KADOSH K, et al. The effect of parietal glutamate/GABA balance on test anxiety levels in early childhood in a cross-sectional and longitudinal study[J]. Cereb Cortex, 2022, 32(15): 3243-3253. DOI: 10.1093/cercor/bhab412.

PREV Functional magnetic resonance imaging and machine learning in the application of brain network mechanisms and diagnosis and treatment of depression
NEXT Progress in MRI assessment of brain structural characteristics in patients with rheumatoid arthritis and its association with immune-inflammatory indicators
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn