Share:
Share this content in WeChat
X
Review
MRI features and research advances of symptomatic developmental venous anomaly
LI Jinbeibei  WEN Xinru  SONG Jianxun 

Cite this article as: LI J B B, WEN X R, SONG J X. MRI features and research advances of symptomatic developmental venous anomaly[J]. Chin J Magn Reson Imaging, 2025, 16(10): 137-142. DOI:10.12015/issn.1674-8034.2025.10.022.


[Abstract] Symptomatic developmental venous anomaly (SDVA) of the brain is a clinical subtype of DVA that causes neurological symptoms due to venous hypertension, thrombosis, or mass effect. Common manifestations include hemorrhage, seizures, headaches, and focal neurological deficits. MRI serves as the cornerstone for diagnosing SDVA and evaluating its symptomatic presentations. Its multi-sequence imaging capability clearly reveals the characteristic "caput medusae" sign of DVA—radially arranged medullary veins converging into a draining vein. Multimodal MRI techniques enable comprehensive assessment of lesion hemodynamics, parenchymal injury, and associated complications. Currently, despite the fact that MRI has achieved some accomplishments in research concerning SDVA, there still exist limitations such as the lack of pathological validation and unclear pathophysiological mechanisms. This review systematically summarizes recent advances in MRI-based research on the imaging features of SDVA and its concomitant pathologies, highlighting the critical role of multimodal MRI in improving diagnostic accuracy and elucidating underlying pathophysiological mechanisms. Meanwhile, it also points out the limitations of current research and the directions for future studies, aiming to provide references and insights for clinicians in the diagnosis, treatment, and related mechanistic research of SDVA.
[Keywords] symptomatic developmental venous anomaly;vascular malformation;draining vein;multimodal magnetic resonance imaging;magnetic resonance imaging

LI Jinbeibei1   WEN Xinru2   SONG Jianxun1, 2*  

1 Shenzhen Baoan School of Clinical Medicine, Guangdong Medical University, Shenzhen 518100, China

2 Room of MR, Shenzhen Baoan People's Hospital, Shenzhen 518100, China

Corresponding author: SONG J X, E-mail: songjianxun@126.com

Conflicts of interest   None.

Received  2025-07-11
Accepted  2025-10-08
DOI: 10.12015/issn.1674-8034.2025.10.022
Cite this article as: LI J B B, WEN X R, SONG J X. MRI features and research advances of symptomatic developmental venous anomaly[J]. Chin J Magn Reson Imaging, 2025, 16(10): 137-142. DOI:10.12015/issn.1674-8034.2025.10.022.

[1]
HSU C C T, KRINGS T. Symptomatic developmental venous anomaly: State-of-the-art review on genetics, pathophysiology, and imaging approach to diagnosis[J]. AJNR Am J Neuroradiol, 2023, 44(5): 498-504. DOI: 10.3174/ajnr.A7829.
[2]
COSTA ALVES J D D DA, FONSECA J R F, RIOS G M, et al. The spectrum of symptomatic arterialized developmental venous anomalies: Case reports[J]. Radiol Case Rep, 2022, 17(10): 3893-3896. DOI: 10.1016/j.radcr.2022.07.056.
[3]
KIYAK V, BEYHAN M, GÖKÇE E. Magnetic resonance imaging findings of cerebral venous malformations[J]. Neurol Sci, 2025, 46(4): 1721-1732. DOI: 10.1007/s10072-024-07912-y.
[4]
COGSWELL P M, PILLAI J J, LANZINO G, et al. Prevalence of developmental venous anomalies in association with sporadic cavernous malformations on 7T MRI[J]. AJNR Am J Neuroradiol, 2023, 45(1): 72-75. DOI: 10.3174/ajnr.A8072.
[5]
VACCARINO F, QUATTROCCHI C C, PARILLO M. Susceptibility-weighted imaging (SWI): Technical aspects and applications in brain MRI for neurodegenerative disorders[J/OL]. Bioengineering (Basel), 2025, 12(5): 473 [2025-07-11]. https://doi.org/10.3390/bioengineering12050473. DOI: 10.3390/bioengineering12050473.
[6]
IRSYAD M A, FITRA F, SANJAYA F A, et al. Cerebellar cavernoma excision with a preserved venous anomaly: A case report in girl 28-year-old[J/OL]. Int J Surg Case Rep, 2023, 107: 108332 [2025-07-11]. https://doi.org/10.1016/j.ijscr.2023.108332. DOI: 10.1016/j.ijscr.2023.108332.
[7]
ISHIGAMI D, KOIZUMI S, MIYAWAKI S, et al. Symptomatic and stenotic developmental venous anomaly with pontine capillary telangiectasia: A case report with genetic considerations[J]. NMC Case Rep J, 2022, 9: 139-144. DOI: 10.2176/jns-nmc.2022-0022.
[8]
JUNG H N, KIM S T, CHA J, et al. Diffusion and perfusion MRI findings of the signal-intensity abnormalities of brain associated with developmental venous anomaly[J]. AJNR Am J Neuroradiol, 2014, 35(8): 1539-1542. DOI: 10.3174/ajnr.A3900.
[9]
LEE S, PARK S, HONG S, et al. Comparison of computed tomography perfusion and magnetic resonance dynamic susceptibility contrast perfusion-weighted imaging in canine brain[J/OL]. Front Vet Sci, 2024, 11: 1298215 [2025-07-11]. https://doi.org/10.3389/fvets.2024.1298215. DOI: 10.3389/fvets.2024.1298215.
[10]
HAGE S F, BI D E, KINKADE S, et al. Circulating molecules reflect imaging biomarkers of hemorrhage in cerebral cavernous malformations[J]. J Cereb Blood Flow Metab, 2025, 45(6): 1153-1165. DOI: 10.1177/0271678X251314366.
[11]
KIM N, RYU W S, HA S Y, et al. Optimal cerebral blood flow thresholds for ischemic core estimation using computed tomography perfusion and diffusion‐weighted imaging[J]. Ann Neurol, 2024, 97(5): 919-929. DOI: 10.1002/ana.27169.
[12]
IV M, FISCHBEIN N J, ZAHARCHUK G. Association of developmental venous anomalies with perfusion abnormalities on arterial spin labeling and bolus perfusion‐weighted imaging[J]. J Neuroimaging, 2015, 25(2): 243-250. DOI: 10.1111/jon.12119.
[13]
HAK J F, BOULOUIS G, KERLEROUX B, et al. Arterial spin labeling for the etiological workup of intracerebral hemorrhage in children[J]. Stroke, 2022, 53(1): 185-193. DOI: 10.1161/STROKEAHA.120.032690.
[14]
MAHAMMEDI A, FETTAHOGLU A, HEIT J J, ET AL. Arterial spin-labeling MRI identifies abnormal perfusion metric at the gray matter/CSF interface in cerebral small vessel disease[J]. AJNR Am J Neuroradiol, 2025, 46(7): 1345-1352. DOI: 10.3174/ajnr.a8682.
[15]
WOODS J G, ACHTEN E, ASLLANI I, et al. Recommendations for quantitative cerebral perfusion MRI using multi-timepoint arterial spin labeling: Acquisition, quantification, and clinical applications[J]. Magn Reson Med, 2024, 92(2): 469-495. DOI: 10.1002/mrm.30091.
[16]
YOO D H, SOHN C H, KANG H S, et al. Arterial Spin-Labeling MR Imaging for the Differential Diagnosis of Venous-Predominant AVMs and Developmental Venous Anomalies[J]. AJNR Am J Neuroradiol, 2023, 44(8): 916-921. DOI: 10.3174/ajnr.A7922.
[17]
ABRUZZO T, MUTHUSAMI P, HUI F. Arterial spin-labeling imaging features of atypical cerebral developmental venous anomaly phenotypes[J/OL]. AJNR Am J Neuroradiol, 2024, 45(7): E24-E24 [2025-07-11]. https://doi.org/10.3174/ajnr.A8239. DOI: 10.3174/ajnr.A8239.
[18]
BRZEGOWY K, KOWALSKA N, SOLEWSKI B, et al. Prevalence and anatomical characteristics of developmental venous anomalies: An MRI study[J]. Neuroradiology, 2021, 63(7): 1001-1008. DOI: 10.1007/s00234-020-02612-8.
[19]
CHEON J E, KIM J H. Congenital intracranial vascular malformations in children : Radiological overview[J]. J Korean Neurosurg Soc, 2024, 67(3): 270-279. DOI: 10.3340/jkns.2024.0033.
[20]
KISHORE K, BODANI V, OLATUNJI R, et al. Venous outflow stenting for symptomatic developmental venous anomaly[J]. Interv Neuroradiol, 2025, 31(1): 128-131. DOI: 10.1177/15910199221121370.
[21]
LEE C, PENNINGTON M A, KENNEY C M. MR evaluation of developmental venous anomalies: Medullary venous anatomy of venous angiomas[J]. AJNR Am J Neuroradiol, 1996, 17(1): 61-70.
[22]
WEBER C E, KRAEMER M, DABRINGHAUS A, et al. Venous diameter changes in chronic active multiple sclerosis lesions[J]. J Neuroimaging, 2021, 31(2): 394-400. DOI: 10.1111/jon.12818.
[23]
SONG J X, ZHANG S X, LU H X, et al. Developmental venous anomalies (DVAs) of the brain and their associated lesions: MRI manifestations[J]. Chinese Journal of Medical Imaging Technology, 2017, 33(4): 518-522. DOI: 10.13929/j.1003-3289.201608134.
[24]
MA L, HOZ S S, GROSSBERG J A, et al. Developmental venous anomalies[J]. Neurosurg Clin N Am, 2024, 35(3): 355-361. DOI: 10.1016/j.nec.2024.02.007.
[25]
ROGERS D M, SHAH L M, WIGGINS R H. The central vein: FLAIR signal abnormalities associated with developmental venous anomalies in patients with multiple sclerosis[J]. AJNR Am J Neuroradiol, 2018, 39(11): 2007-2013. DOI: 10.3174/ajnr.A5819.
[26]
MAGYAR M, GATTRINGER T, ENZINGER C, et al. Incidence of developmental venous anomalies in patients with multiple sclerosis: A 3 tesla MRI study[J/OL]. Front Neurol, 2022, 13: 824347 [2025-07-11]. https://doi.org/10.3389/fneur.2022.824347. DOI: 10.3389/fneur.2022.824347.
[27]
GRAZZINI I, CALCHETTI B, CUNEO G L. Developmental venous anomalies in patients with multiple sclerosis: Is that a coincidence or an ancillary finding?[J]. Neurol Sci, 2021, 42(6): 2453-2460. DOI: 10.1007/s10072-020-04840-5.
[28]
HAACKE E M, GE Y, SETHI S K, et al. An overview of venous abnormalities related to the development of lesions in multiple sclerosis[J/OL]. Front Neurol, 2021, 12: 561458 [2025-07-11]. https://doi.org/10.3389/fneur.2021.561458. DOI: 10.3389/fneur.2021.561458.
[29]
MA L, GAO Y G, CAI Y Q, et al. MRI evaluation of developmental venous anomalies of the brain[J]. Chin J Radiol, 1996, (12): 58-60.
[30]
PEREIRA V M, GEIBPRASERT S, KRINGS T, et al. Pathomechanisms of symptomatic developmental venous anomalies[J]. Stroke, 2008, 39(12): 3201-3215. DOI: 10.1161/STROKEAHA.108.521799.
[31]
CHANG S J, REBCHUK A D, TEAL P, et al. COVID-19-Associated Cerebral Developmental Venous Anomaly Thrombosis With Hemorrhagic Transformation[J/OL]. Stroke, 2022, 53(7): e255-e256 [2025-07-11]. https://doi.org/10.1161/STROKEAHA.122.039534. DOI: 10.1161/STROKEAHA.122.039534.
[32]
IRONSIDE N, PETROSIAN D, ABBAS S, et al. Developmental venous anomaly thrombosis in a patient with coronavirus disease 2019-associated hypercoagulability: Illustrative case[J/OL]. J Neurosurg Case Lessons, 2023, 5(6): CASE22487 [2025-07-11]. https://doi.org/10.3171/CASE22487. DOI: 10.3171/CASE22487.
[33]
KIM J H, JUNG H, KIM W, et al. Recurrent transient neurological deficit due to intracerebral steal phenomenon in association with a developmental venous anomaly[J/OL]. J Stroke Cerebrovasc Dis, 2021, 30(11): 106058 [2025-07-11]. https://doi.org/10.1016/j.jstrokecerebrovasdis.2021.106058. DOI: 10.1016/j.jstrokecerebrovasdis.2021.106058.
[34]
SAHIN N, SOLAK A, GENC B, et al. Atypical developmental venous anomaly associated with contrast enhancement and hyperperfusion in the surrounding basal ganglia[J/OL]. Quant Imaging Med Surg, 2015, 5(3) [2025-07-11]. https://doi.org/10.3978/j.issn.2223-4292.2014.09.02. DOI: 10.3978/j.issn.2223-4292.2014.09.02.
[35]
AGYEMANG K, GÓMEZ RODRÍGUEZ R, ROCHA MARUSSI V H, et al. Case report: Delayed outflow obstruction of a DVA: a rare complication of brainstem cavernoma surgery[J/OL]. Front Neurol, 2023, 14 [2025-07-11]. https://doi.org/10.3389/fneur.2023.1073366. DOI: 10.3389/fneur.2023.1073366.
[36]
MHANNA H Y ABU, OMAR A F, RADZI Y M, et al. Systematic review of functional magnetic resonance imaging (fMRI) applications in the preoperative planning and treatment assessment of brain tumors[J/OL]. Heliyon, 2025, 11(3): e42464 [2025-07-11]. https://doi.org/10.1016/j.heliyon.2025.e42464. DOI: 10.1016/j.heliyon.2025.e42464.
[37]
FINDLAY M C, KIM R B, PUTNAM A R, et al. Management of symptomatic hemorrhage from a developmental venous anomaly[J/OL]. Cureus, 2024, 16(4): e58130 [2025-07-11]. https://doi.org/10.7759/cureus.58130. DOI: 10.7759/cureus.58130.
[38]
BASKURT O, HIÇDÖNMEZ T, MıNARECı K O, et al. Idiopathic cerebellar hemorrhage in a patient with isolated developmental venous anomaly: A case report[J/OL]. Surg Neurol Int, 2025, 16: 82 [2025-07-11]. https://doi.org/10.25259/SNI_1056_2024. DOI: 10.25259/SNI_1056_2024.
[39]
SILVA A H D, WIJESINGHE H, LO W B, et al. Paediatric developmental venous anomalies (DVAs): How often do they bleed and where?[J]. Childs Nerv Syst, 2020, 36(7): 1435-1443. DOI: 10.1007/s00381-019-04460-1.
[40]
MESKINE T EL, LI J, REISE J, et al. Epilepsy and cerebral developmental venous anomalies (DVAs): A systematic review[J]. Epileptic Disord, 2023, 25(2): 209-217. DOI: 10.1002/epd2.20020.
[41]
GASPARINI S, NERI S, BRIGO F, et al. Late epileptic seizures following cerebral venous thrombosis: A systematic review and meta-analysis[J]. Neurol Sci, 2022, 43(9): 5229-5236. DOI: 10.1007/s10072-022-06148-y.
[42]
ZHANG J, WANG S, JIANG Y, et al. Oculomotor nerve palsy induced by a cerebral developmental venous anomaly: A case report and comprehensive review[J/OL]. Am J Case Rep, 2024, 25 [2025-07-11]. https://doi.org/10.12659/AJCR.943363. DOI: 10.12659/AJCR.943363.
[43]
TUGEND M, SEKULA R F. Microvascular decompression for developmental venous anomaly causing hemifacial spasm: Illustrative case[J/OL]. J Neurosurg Case Lessons, 2024, 7(1) [2025-07-11]. https://doi.org/10.3171/CASE23479. DOI: 10.3171/CASE23479.
[44]
GUJJAR A R, LAL D, RANIGA S, et al. Developmental venous anomaly presenting as an acute stroke mimic[J/OL]. Cureus, 2023, 15(12): e50903 [2025-07-11]. https://doi.org/10.7759/cureus.50903. DOI: 10.7759/cureus.50903.
[45]
AYTEKIN G, TUNA M, SOLAK S. Mesencephalic developmental venous anomaly causing obstructive hydrocephalus due to aqueductal stenosis[J]. Balkan Med J, 2024, 41(6): 503-504. DOI: 10.4274/balkanmedj.galenos.2024.2024-7-37.
[46]
HAYASHI T, UCHINO A, TOKUSHIGE K, et al. Aqueductal developmental venous anomaly causing obstructive hydrocephalus: A case report and review of the literature[J]. Radiol Case Rep, 2024, 19(5): 2024-2030. DOI: 10.1016/j.radcr.2024.02.023.
[47]
HIRAGA K, HAYASHI S, OSHIMA R, et al. Mesencephalic developmental venous anomaly causing obstructive hydrocephalus: Illustrative case[J/OL]. J Neurosurg Case Lessons, 2023, 5(12): CASE22563 [2025-07-11]. https://doi.org/10.3171/CASE22563. DOI: 10.3171/CASE22563.
[48]
KHURANA N K R, RAZ E, MOHAMED A W H, et al. Intracranial cerebrovascular lesions on T2-weighted magnetic resonance imaging[J/OL]. J Clin Imaging Sci, 2024, 14: 19 [2025-07-11]. https://doi.org/10.25259/JCIS_16_2024. DOI: 10.25259/JCIS_16_2024.
[49]
BIANCONI A, SALVATI L F, PERRELLI A, et al. Distant recurrence of a cerebral cavernous malformation in the vicinity of a developmental venous anomaly: Case report of local oxy-inflammatory events[J/OL]. Int J Mol Sci, 2022, 23(23): 14643 [2025-07-11]. https://doi.org/10.3390/ijms232314643. DOI: 10.3390/ijms232314643.
[50]
REN A A, SNELLINGS D A, SU Y S, et al. PIK3CA and CCM mutations fuel cavernomas through a cancer-like mechanism[J]. Nature, 2021, 594(7862): 271-276. DOI: 10.1038/s41586-021-03562-8.
[51]
WENG J, YANG Y, SONG D, et al. Somatic MAP3K3 mutation defines a subclass of cerebral cavernous malformation[J]. Am J Hum Genet, 2021, 108(5): 942-950. DOI: 10.1016/j.ajhg.2021.04.005.
[52]
HONG T, XIAO X, REN J, et al. Somatic MAP3K3 and PIK3CA mutations in sporadic cerebral and spinal cord cavernous malformations[J]. Brain, 2021, 144(9): 2648-2658. DOI: 10.1093/brain/awab117.
[53]
TASIOU A, BROTIS A G, KALOGERAS A, et al. Cavernous malformations of the central nervous system: An international consensus statement[J/OL]. Brain and Spine, 2023, 3: 102707 [2025-07-11]. https://doi.org/10.1016/j.bas.2023.102707. DOI: 10.1016/j.bas.2023.102707.
[54]
SNELLINGS D A, GIRARD R, LIGHTLE R, et al. Developmental venous anomalies are a genetic primer for cerebral cavernous malformations[J]. Nat Cardiovasc Res, 2022, 1(3): 246-252. DOI: 10.1038/s44161-022-00035-7.
[55]
HASHIKATA H, MAKI Y, ISHIBASHI R, et al. Infratentorial developmental venous anomaly concurrent with a cavernoma and dural arteriovenous fistula[J/OL]. J Stroke Cerebrovasc Dis, 2022, 31(9): 106608 [2025-07-11]. https://doi.org/10.1016/j.jstrokecerebrovasdis.2022.106608. DOI: 10.1016/j.jstrokecerebrovasdis.2022.106608.
[56]
CORREIA DE VERDIER M, RONNE-ENGSTRÖM E, Borota L, et al. Hemodynamic evaluation of intracranial arteriovenous malformations: Pre- and post-treatment 2D phase-contrast MRI measurements[J/OL]. Acta Radiol Open, 2024, 13(8): 20584601241269608 [2025-07-11]. https://doi.org/10.1177/20584601241269608. DOI: 10.1177/20584601241269608.
[57]
IVANOV K, ATSEV S, PETROV P P, et al. Partial endovascular embolization of a cerebral arteriovenous malformation in a patient with seizures caused by a steal phenomenon: A case analysis[J/OL]. Cureus, 2024, 16(5): e60499 [2025-07-11]. https://doi.org/10.7759/cureus.60499. DOI: 10.7759/cureus.60499.
[58]
NAVLANI S, MESTHA A, MUKHERJEE A, et al. Conjoined pathways: Unraveling the coexistence of developmental venous anomaly with arteriovenous malformation[J/OL]. Cureus, 2023, 15(8): e44350 [2025-07-11]. https://doi.org/10.7759/cureus.44350. DOI: 10.7759/cureus.44350.
[59]
LI M, DING J, ZONG X, et al. Developmental venous anomaly coexisting with arteriovenous malformation: a case report[J/OL]. Front Surg, 2025, 12: 1562013 [2025-07-11]. https://doi.org/10.3389/fsurg.2025.1562013. DOI: 10.3389/fsurg.2025.1562013.
[60]
MOURSI M O, ALSADI A, ALI Y, et al. Coexistence of brain capillary telangiectasia and venous angioma: A case report and literature review[J/OL]. Clin Case Rep, 2024, 12(5): e8819 [2025-07-11]. https://doi.org/10.1002/ccr3.8819. DOI: 10.1002/ccr3.8819.
[61]
GERALDO AF, MESSINA SS, TORTORA D, et al. Neonatal developmental venous anomalies: clinicoradiologic characterization and follow-up[J]. AJNR Am J Neuroradiol, 2020, 41(12): 2370-2376. DOI: 10.3174/ajnr.A6829.

PREV Research progress of imaging evaluation of hemorrhagic transformation after thrombolysis in acute ischemic stroke
NEXT Progress of HRMR-VWI in the evaluation and follow-up of endovascular treatment of intracranial aneurysms
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn