Share:
Share this content in WeChat
X
Review
Progress of HRMR-VWI in the evaluation and follow-up of endovascular treatment of intracranial aneurysms
ZHANG Zixian  SUN Liqiang  ZHANG Shuqian  CHEN Yingmin 

Cite this article as: ZHANG Z X, SUN L Q, ZHANG S Q, et al. Progress of HRMR-VWI in the evaluation and follow-up of endovascular treatment of intracranial aneurysms[J]. Chin J Magn Reson Imaging, 2025, 16(10): 143-148, 170. DOI:10.12015/issn.1674-8034.2025.10.023.


[Abstract] Intracranial aneurysms are characterized by high prevalence, high rupture rates, and high morbidity and mortality after rupture. Endovascular treatment has become the mainstream approach for their management, yet postoperative recurrence rates remain relatively high, necessitating re-intervention in some patients, with related complications continuing to impact prognosis. Consequently, standardized and continuous postoperative imaging follow-up is crucial for early detection of recurrence and assessment of vascular reconstruction efficacy. However, current research in this field still faces challenges such as inconsistent imaging evaluation criteria and lack of consensus on follow-up strategies. This review focuses on endovascular treatment methods for intracranial aneurysms, recurrence factors, the technical advantages of high-resolution magnetic resonance vessel wall imaging, and its application in post-treatment follow-up. It systematically summarizes existing research advancements and limitations while further exploring future research directions, aiming to provide new insights for deeper exploration and clinical practice in this field.
[Keywords] intracranial aneurysm;aneurysm wall enhancement;magnetic resonance imaging;vessel wall imaging;endovascular treatment

ZHANG Zixian1, 2   SUN Liqiang2   ZHANG Shuqian2   CHEN Yingmin2*  

1 Graduate School of North China University of Technology, Tangshan 063000, China

2 Department of Radiology, Hebei General Hospital, Shijiazhuang 050051, China

Corresponding author: CHEN Y M, E-mail: hbghyingxiang@126.com

Conflicts of interest   None.

Received  2025-07-14
Accepted  2025-10-06
DOI: 10.12015/issn.1674-8034.2025.10.023
Cite this article as: ZHANG Z X, SUN L Q, ZHANG S Q, et al. Progress of HRMR-VWI in the evaluation and follow-up of endovascular treatment of intracranial aneurysms[J]. Chin J Magn Reson Imaging, 2025, 16(10): 143-148, 170. DOI:10.12015/issn.1674-8034.2025.10.023.

[1]
ALLAW S, KHABAZ K, GIVEN T C, et al. A review of intracranial aneurysm imaging modalities, from CT to state-of-the-art MR[J]. AJNR Am J Neuroradiol, 2025, 46(6): 1082-1092. DOI: 10.3174/ajnr.A8549.
[2]
ELSHEIKH S, URBACH H, MECKEL S. Contrast enhancement of intracranial aneurysms on 3T 3D black-blood MRI and its relationship to aneurysm recurrence following endovascular treatment[J]. AJNR Am J Neuroradiol, 2020, 41(3): 495-500. DOI: 10.3174/ajnr.A6440.
[3]
LI W S, ZHAO Y Y, GUO Z, et al. Clinical efficacy analysis of different antiplatelet aggregation treatment regimens for patients with ruptured wide-neck intracranial aneurysms undergoing LVIS stent-assisted coil embolization in the acute phase[J]. Chin J Cerebrovasc Dis, 2025, 22(5): 302-309. DOI: 10.3969/j.issn.1672-5921.2025.05.002.
[4]
YANG M H, TANG J X, CHEN B, et al. Flow-diverter devices in complex intracranial aneurysm: a complication analysis[J]. Chin J Neuromed, 2023, 22(11): 1129-1135. DOI: 10.3760/cma.j.cn115354-20230816-00065.
[5]
QIN J B, ZHU M, LIU G F. Research progress of inflammatory reaction mechanism and evaluation of high-resolution magnetic resonance and potential therapeutic drugs of unruptured intracranial aneurysms[J]. Chin J Cerebrovasc Dis, 2021, 18(9): 628-633. DOI: 10.3969/j.issn.1672-5921.2021.09.007.
[6]
FANNING N F, WILLINSKY R A, BRUGGE K G TER. Wall enhancement, edema, and Hydrocephalus after endovascular coil occlusion of intradural cerebral aneurysms[J]. J Neurosurg, 2008, 108(6): 1074-1086. DOI: 10.3171/JNS/2008/108/6/1074.
[7]
AHN H S, JEON H J, CHO B M, et al. Single Neuroform Atlas stent: a reliable approach for treating complex wide-neck bifurcated aneurysms[J/OL]. Front Neurol, 2024, 15: 1391799 [2025-07-24]. https://pubmed.ncbi.nlm.nih.gov/39099782/. DOI: 10.3389/fneur.2024.1391799.
[8]
RODRIGUEZ CAAMAÑO I, REMOLLO S, TERCEÑO M, et al. Y stent-assisted coiling technique for bifurcation aneurysms using double neuroform® stent: aLarge restrospective series[J]. Clin Neuroradiol, 2024, 34(4): 919-928. DOI: 10.1007/s00062-024-01437-9.
[9]
JUAN B, ZHANG X, CAO Y. Tubridge flow-diverting stent for treatment of unruptured intracranial complex aneurysms[J/OL]. Front Neurol, 2025, 16: 1584983 [2025-07-24]. https://pubmed.ncbi.nlm.nih.gov/40589988/. DOI: 10.3389/fneur.2025.1584983.
[10]
HAN M S, JUNG S H, KIM T S, et al. Reconstructive endovascular treatment of an intracranial infectious aneurysm in bacterial meningitis: a case report and review of literature[J/OL]. World Neurosurg, 2016, 90: 700.e1-700700.e5 [2025-07-24]. https://pubmed.ncbi.nlm.nih.gov/26893038/. DOI: 10.1016/j.wneu.2016.02.031.
[11]
Neurosurgery Branch of Chinese Medical Association, Cerebrovascular Surgery Branch of Chinese Stroke Association, National Center for Neurological Disorders, et al. Chinese guideline for the clinical management of patients with unruptured intracranial aneurysms(2024)[J]. Natl Med J China, 2024, 104(21): 1918-1939. DOI: 10.3760/cma.j.cn112137-20240222-00373.
[12]
JIN J, GUO G, REN Y, et al. Risk factors for recurrence of intracranial aneurysm after coil embolization: a meta-analysis[J/OL]. Front Neurol, 2022, 13: 869880 [2025-07-24]. https://pubmed.ncbi.nlm.nih.gov/35937054/. DOI: 10.3389/fneur.2022.869880.
[13]
GOERTZ L, LIEBIG T, PENNIG L, et al. Propensity score-adjusted analysis on stent-assisted coiling versus coiling alone for ruptured intracranial aneurysms[J/OL]. Sci Rep, 2021, 11(1): 21742 [2025-07-24]. https://pubmed.ncbi.nlm.nih.gov/34741073/. DOI: 10.1038/s41598-021-01156-y.
[14]
ZHANG H, LIU P, LIU Q L. Discussion on progress of intracranial aneurysm interventional therapy instruments[J]. Chin J Med Instrum, 2024, 48(5): 512-518. DOI: 10.12455/j.issn.1671-7104.230326.
[15]
TONG J J, KANG J L, TIAN X H. Progress in treatment of recurrent intracranial aneurysms after interventional embolization[J]. Chin J Neurosurg, 2020, 36(3): 316-319. DOI: 10.3760/cma.j.cn112050-20181022-00602.
[16]
TAN S, ZHOU X, XU X, et al. Diagnostic performance of high-resolution vessel wall MR imaging combined with TOF-MRA in the follow-up of intracranial vertebrobasilar dissecting aneurysms after reconstructive endovascular treatment[J]. AJNR Am J Neuroradiol, 2023, 44(4): 453-459. DOI: 10.3174/ajnr.A7838.
[17]
GRÜTER B E, CANZANELLA G, HÄGLER J, et al. Topographic distribution of inflammation factors in a healing aneurysm[J/OL]. J Neuroinflammation, 2023, 20(1): 182 [2025-07-13]. https://jneuroinflammation.biomedcentral.com/articles/10.1186/s12974-023-02863-1. DOI: 10.1186/s12974-023-02863-1.
[18]
WEI H, WANG G J, TIAN Q, et al. Low shear stress induces macrophage infiltration and aggravates aneurysm wall inflammation via CCL7/CCR1/TAK1/NF-κB axis[J/OL]. Cell Signal, 2024, 117: 111122 [2025-07-13]. https://pubmed.ncbi.nlm.nih.gov/38417634/. DOI: 10.1016/j.cellsig.2024.111122.
[19]
Chinese Society of Physician Association - Neurointerventional Professional Committee-China Intracranial Aneurysm Research Group. China guidelines for imaging interpretation of intracranial aneurysms (2024 edition)[J]. Chin J Neurosurg, 2024, 40(8): 757-773. DOI: 10.3760/cma.j.cn112050-20240430-00152.
[20]
SHAO Q J, LI Q, LI T X, et al. Preliminary study of 3D T1-SPACE combined with 3D-TOF MRA in the follow-up for the intracranial aneurysm treated with Pipeline Flex embolization device[J]. Chin J Neurosurg, 2020, 36(1): 52-57. DOI: 10.3760/cma.j.issn.1001-2346.2020.01.014.
[21]
SHAO Q J, WU Q W, LI Q, et al. Usefulness of 3D T1-SPACE in combination with 3D-TOF MRA for follow-up evaluation of intracranial aneurysms treated with pipeline embolization devices[J/OL]. Front Neurol, 2020, 11: 542493 [2025-07-13]. https://pubmed.ncbi.nlm.nih.gov/33362681/. DOI: 10.3389/fneur.2020.542493.
[22]
MIRÇIK E, HAKYEMEZ B. New technique: the use of the THRIVE sequence in the follow-up of patients who received endovascular intracranial aneurysm treatment[J]. Neuroradiology, 2021, 63(3): 399-407. DOI: 10.1007/s00234-020-02527-4.
[23]
CHUN D H, KIM S T, JEONG Y G, et al. High-resolution magnetic resonance imaging of intracranial vertebral artery dissecting aneurysm for planning of endovascular treatment[J]. J Korean Neurosurg Soc, 2015, 58(2): 155-158. DOI: 10.3340/jkns.2015.58.2.155.
[24]
SHAO Q J, LI Q, WU Q W, et al. Comparison of 3D T1-SPACE and DSA in evaluation of intracranial in-stent restenosis[J/OL]. Br J Radiol, 2021, 94(1118): 20190950 [2025-07-13]. https://pubmed.ncbi.nlm.nih.gov/33259233/. DOI: 10.1259/bjr.20190950.
[25]
HASHIMOTO Y, MATSUSHIGE T, KAWANO R, et al. High signal intensity of the intraaneurysmal sac on T1 CUBE imaging as a predictor of aneurysm stability after coil embolization[J]. J Neurosurg, 2023, 140(1): 144-152. DOI: 10.3171/2023.5.JNS23616.
[26]
WU Y J, LI F B, WANG Y L, et al. High-resolution vessel wall magnetic resonance imaging of the middle cerebral artery: comparison of 3D CUBE T1-weighted sequence with and without fat suppression[J/OL]. Med Sci Monit, 2020, 26: e928931 [2025-07-13]. https://pubmed.ncbi.nlm.nih.gov/33159730/. DOI: 10.12659/MSM.928931.
[27]
SONGSAENG D, SAKARUNCHAI I, HARMONTREE S, et al. Black-blood vessel wall magnetic resonance imaging–A new imaging biomarker for regrowth of coiled saccular aneurysms?[J/OL]. Interdiscip Neurosurg, 2021, 23: 100920 [2025-07-13]. https://linkinghub.elsevier.com/retrieve/pii/S2214751920304813. DOI: 10.1016/j.inat.2020.100920.
[28]
RAZ E, GOLDMAN-YASSEN A, DERMAN A, et al. Vessel wall imaging with advanced flow suppression in the characterization of intracranial aneurysms following flow diversion with Pipeline embolization device[J]. J Neurointerv Surg, 2022, 14(12): 1264-1269. DOI: 10.1136/neurintsurg-2021-018086.
[29]
LU L F, ZENG Z X, TANG X P, et al. Application of high-resolution vessel wall imaging combined with Silent MRA in follow-up for intracranial aneurysm after endovascular treatment[J]. J China Clin Med Imag, 2023, 34(5): 314-318. DOI: 10.12117/jccmi.2023.05.003.
[30]
TAKANO N, SUZUKI M, IRIE R, et al. Non-contrast-enhanced silent scan MR angiography of intracranial anterior circulation aneurysms treated with a low-profile visualized intraluminal support device[J]. AJNR Am J Neuroradiol, 2017, 38(8): 1610-1616. DOI: 10.3174/ajnr.A5223.
[31]
ZENG Z X, ZHANG Z T, GONG L G. Application progress of imaging techniques in re-examination of intracranial aneurysm after interventional embolization[J]. Chin J Med Imag, 2024, 32(11): 1182-1185, 1190. DOI: 10.3969/j.issn.1005-5185.2024.11.016.
[32]
QIN F Y, LIU J Q, ZHAO X T, et al. Endovascular treatment of ruptured very small intracranial aneurysms: complications, recurrence rate, and clinical outcomes[J/OL]. Front Neurol, 2022, 12: 767649 [2025-07-13]. https://pubmed.ncbi.nlm.nih.gov/35058874/. DOI: 10.3389/fneur.2021.767649.
[33]
MORTEZAEI A, YAZDANIAN F, MIRAHMADI ERAGHI M, et al. Retreatment rate and strategies for recurrent and residual aneurysms after Woven EndoBridge (WEB) treatment: a comprehensive systematic review and meta-analysis[J/OL]. Neurosurg Rev, 2025, 48(1): 400 [2025-07-13]. https://pubmed.ncbi.nlm.nih.gov/40316859/. DOI: 10.1007/s10143-025-03532-y.
[34]
LI Y S, ZHANG X D, GUO Z D, et al. Standard vs. modified antiplatelet therapy based on thromboelastography with platelet mapping for preventing bleeding events in patients undergoing stent-assisted coil for a ruptured intracranial aneurysm[J/OL]. Front Neurol, 2021, 11: 615829 [2025-07-13]. https://pubmed.ncbi.nlm.nih.gov/33584516/. DOI: 10.3389/fneur.2020.615829.
[35]
SHAO Q J, LI Q, WU Q W, et al. Application of 3D T1-SPACE combined with 3D-TOF sequence for follow-up evaluation of stent-assisted coil embolization for intracranial aneurysm[J]. J Interv Med, 2021, 4(2): 71-76. DOI: 10.1016/j.jimed.2021.02.007.
[36]
MATSUKAWA S, ISHII A, FUSHIMI Y, et al. Efficacy of high-resolution vessel wall MRI in the postoperative assessment of intracranial aneurysms following flow diversion treatment[J]. J Neurosurg, 2024, 142(1): 88-97. DOI: 10.3171/2024.5.JNS24174.
[37]
SONG Y, ZHOU J X, TAN Y, et al. Risk factors and clinical significance of ultra-long-term microischemia after intracranial aneurysm embolization[J]. Neurol Ther, 2024, 13(4): 1173-1190. DOI: 10.1007/s40120-024-00630-9.
[38]
LADENHAUF V, GALIJASEVIC M, REGODIC M, et al. Aneurysmal wall enhancement of non-ruptured intracranial aneurysms after endovascular treatment correlates with higher aneurysm reperfusion rates, but only in large aneurysms[J/OL]. Diagnostics (Basel), 2024, 14(14): 1533 [2025-07-13]. https://pubmed.ncbi.nlm.nih.gov/39061670/. DOI: 10.3390/diagnostics14141533.
[39]
LARSEN N, FLÜH C, MADJIDYAR J, et al. Visualization of aneurysm healing: enhancement patterns and reperfusion in intracranial aneurysms after embolization on 3T vessel wall MRI[J]. Clin Neuroradiol, 2020, 30(4): 811-815. DOI: 10.1007/s00062-019-00854-5.
[40]
TIAN Z B, CHEN J F, ZHANG Y S, et al. Quantitative analysis of intracranial vertebrobasilar dissecting aneurysm with intramural hematoma after endovascular treatment using 3-T high-resolution magnetic resonance imaging[J/OL]. World Neurosurg, 2017, 108: 236-243 [2025-07-13]. https://pubmed.ncbi.nlm.nih.gov/28882710/. DOI: 10.1016/j.wneu.2017.08.161.
[41]
NIKOUBASHMAN O, TABRIZI C M, MÜNSTERMANN M, et al. Findings and prognostic value of contrast-enhanced early magnetic resonance imaging after coil embolization of cerebral aneurysms[J/OL]. World Neurosurg, 2020, 135: e382-e385 [2025-07-13]. https://pubmed.ncbi.nlm.nih.gov/31816454/. DOI: 10.1016/j.wneu.2019.11.173.
[42]
ZHANG X X, XIE X C, FENG C F, et al. The effect of different signals of intramural hematoma in HR-MRI on the prognosis of patients with vertebrobasilar artery dissecting aneurysmsy[J]. J Interv Radiol, 2021, 30(12): 1205-1209. DOI: 10.3969/j.issn.1008-794X.2021.12.002.
[43]
HARA T, MATSUSHIGE T, YOSHIYAMA M, et al. Association of circumferential aneurysm wall enhancement with recurrence after coiling of unruptured intracranial aneurysms: a preliminary vessel wall imaging study[J]. J Neurosurg, 2022, 138(1): 147-153. DOI: 10.3171/2022.4.JNS22421.
[44]
WANG F, XIE X C, XIONG F, et al. Evaluation of the effect of vessel wall thickening and enhancement on prognosis in intracranial vertebral artery dissecting aneurysms by high-resolution MRI[J]. Journal of Practical Radiology, 2022, 38(3): 400-403. DOI: 10.3969/j.issn.1002-1671.2022.03.012.
[45]
LU Y C, WANG C, BAO Y F, et al. Association between intracranial aneurysm wall enhancement and intracranial atherosclerotic plaque: a cross-sectional study using high-resolution vessel wall imaging[J]. Quant Imaging Med Surg, 2024, 14(2): 1553-1563. DOI: 10.21037/qims-23-1025.
[46]
DIEKHOFF T, ESHED I, RADNY F, et al. Choose wisely: imaging for diagnosis of axial spondyloarthritis[J]. Ann Rheum Dis, 2022, 81(2): 237-242. DOI: 10.1136/annrheumdis-2021-220136.
[47]
GU J J, GE S X, CHEN X S, et al. Does it stable? Intracranial aneurysm wall enhancement might be the warning signals: a meta-analysis of observational studies[J/OL]. Neurosurg Rev, 2024, 47(1): 524 [2025-07-13]. https://pubmed.ncbi.nlm.nih.gov/39223389/. DOI: 10.1007/s10143-024-02760-y.
[48]
LEBER S L, HASSLER E M, MICHENTHALER M, et al. Wall enhancement of coiled intracranial aneurysms is associated with aneurysm recanalization: a cross-sectional study[J]. AJNR Am J Neuroradiol, 2024, 45(5): 599-604. DOI: 10.3174/ajnr.A8174.
[49]
DENG Y J, MEI Y Q, ZHANG Y, et al. Intracranial aneurysm vessel segmentation method based on deep learning[J]. Chin Comput Med Imag, 2025, 31(3): 318-324. DOI: 10.19627/j.cnki.cn31-1700/th.2025.03.005.
[50]
BAI P R, SONG X F, LIU Q Y, et al. Automatic detection method of intracranial aneurysms on maximum intensity projection images based on SE-CaraNet[J]. J Biomed Eng, 2024, 41(2): 228-236. DOI: 10.7507/1001-5515.202301008.
[51]
WANG M H, ZHANG B P, ZHU Y Y, et al. Advances in artificial intelligence for assessing the rupture risk of intracranial aneurysm[J]. Chin Comput Med Imag, 2024, 30(6): 766-769. DOI: 10.19627/j.cnki.cn31-1700/th.2024.06.022.

PREV MRI features and research advances of symptomatic developmental venous anomaly
NEXT Applications and research advances of cardiovascular imaging in cardio-oncology
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn