Share:
Share this content in WeChat
X
Review
Applications and research advances of cardiovascular imaging in cardio-oncology
LI Weibo  GAO Yifeng  XU Lei 

Cite this article as: LI W B, GAO Y F, XU L. Applications and research advances of cardiovascular imaging in cardio-oncology[J]. Chin J Magn Reson Imaging, 2025, 16(10): 149-156, 201. DOI:10.12015/issn.1674-8034.2025.10.024.


[Abstract] Cardiovascular disease and cancer remain the leading causes of mortality worldwide, and their coexistence significantly increases overall mortality risk, posing a major challenge in current clinical practice. With continuous advancements in cancer therapies and prolonged patient survival, the incidence of treatment-related cardiovascular toxicity is rising, profoundly impacting the prognosis of cancer patients. Against this backdrop, cardio-oncology has gradually emerged and evolved as a distinct interdisciplinary field dedicated to the systematic prevention, identification, and management of cardiovascular complications associated with cancer treatment. However, existing reviews often focus on single imaging modalities or isolated disease entities, lacking comprehensive, multimodal, and longitudinal monitoring strategies. This review centers on treatment-induced cardiovascular toxicity, providing an in-depth discussion of the current applications and recent advancements of multimodality cardiovascular imaging across a range of clinical scenarios, including cardiac structure and function, myocardial strain, tissue characterization, vascular toxicity, immune-related myocarditis and stress cardiomyopathy. We critically examine the strengths and limitations of each imaging technique, offering insights into the early detection and intervention of cardiotoxicity. The review aims to support personalized risk stratification and cardiovascular protection strategies, ultimately enhancing diagnostic accuracy and therapeutic precision in cardio-oncology.
[Keywords] cardio-oncology;cardiovascular toxicity;magnetic resonance imaging;multimodality imaging;risk assessment

LI Weibo   GAO Yifeng   XU Lei*  

Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China

Corresponding author: XU L, E-mail: leixu2001@hotmail.com

Conflicts of interest   None.

Received  2025-07-29
Accepted  2025-09-25
DOI: 10.12015/issn.1674-8034.2025.10.024
Cite this article as: LI W B, GAO Y F, XU L. Applications and research advances of cardiovascular imaging in cardio-oncology[J]. Chin J Magn Reson Imaging, 2025, 16(10): 149-156, 201. DOI:10.12015/issn.1674-8034.2025.10.024.

[1]
MENSAH G A, FUSTER V, MURRAY C J L, et al. Global burden of cardiovascular diseases and risks, 1990-2022[J]. J Am Coll Cardiol, 2023, 82(25): 2350-2473. DOI: 10.1016/j.jacc.2023.11.007.
[2]
SIEGEL R L, KRATZER T B, GIAQUINTO A N, et al. Cancer statistics, 2025[J]. CA A Cancer J Clin, 2025, 75(1): 10-45. DOI: 10.3322/caac.21871.
[3]
LYON A R, LÓPEZ-FERNÁNDEZ T, COUCH L S, et al. 2022 ESC Guidelines on cardio-oncology developed in collaboration with the European Hematology Association (EHA), the European Society for Therapeutic Radiology and Oncology (ESTRO) and the International Cardio-Oncology Society (IC-OS)[J]. Eur Heart J, 2022, 43(41): 4229-4361. DOI: 10.1093/eurheartj/ehac244.
[4]
BLOOM M W, VO J B, RODGERS J E, et al. Cardio-oncology and heart failure: a scientific statement from the heart failure society of America[J]. J Card Fail, 2025, 31(2): 415-455. DOI: 10.1016/j.cardfail.2024.08.045.
[5]
ADDISON D, NEILAN T G, BARAC A, et al. Cardiovascular imaging in contemporary cardio-oncology: a scientific statement from the American heart association[J]. Circulation, 2023, 148(16): 1271-1286. DOI: 10.1161/CIR.0000000000001174.
[6]
WANG N, SUN H G. Application progress of echocardiography in tumor cardiology[J]. J Med Imag, 2021, 31(9): 1590-1592.
[7]
LIU C L, LI Q. Multimodal assessment of cancer therapy-related cardiovascular toxicity[J]. Oncoradiology, 2025, 34(1): 11-17. DOI: 10.19732/j.cnki.2096-6210.2025.01.002.
[8]
NAZIR M S, OKAFOR J, MURPHY T, et al. Echocardiography versus cardiac MRI for measurement of left ventricular ejection fraction in individuals with cancer and suspected cardiotoxicity[J/OL]. Radiol Cardiothorac Imaging, 2024, 6(1): e230048 [2025-07-28]. https://pubmed.ncbi.nlm.nih.gov/38206164/. DOI: 10.1148/ryct.230048.
[9]
CHAI Y Z, JIANG M, PU J. Interpretation of Chinese guideline for the clinical application of noninvasive imaging technology in accessing cancer therapy-related cardiovascular toxicity(2023 edition)[J]. Oncoradiology, 2025, 34(1): 1-10. DOI: 10.19732/j.cnki.2096-6210.2025.01.001.
[10]
THAVENDIRANATHAN P, SHALMON T, FAN C S, et al. Comprehensive cardiovascular magnetic resonance tissue characterization and cardiotoxicity in women with breast cancer[J]. JAMA Cardiol, 2023, 8(6): 524-534. DOI: 10.1001/jamacardio.2023.0494.
[11]
NURMOHAMED N S, VAN ROSENDAEL A R, DANAD I, et al. Atherosclerosis evaluation and cardiovascular risk estimation using coronary computed tomography angiography[J]. Eur Heart J, 2024, 45(20): 1783-1800. DOI: 10.1093/eurheartj/ehae190.
[12]
SOSCHYNSKI M, STORELLI R, BIRKEMEYER C, et al. CT myocardial perfusion and CT-FFR versus invasive FFR for hemodynamic relevance of coronary artery disease[J/OL]. Radiology, 2024, 312(2): e233234 [2025-07-28]. https://pubmed.ncbi.nlm.nih.gov/39162632/. DOI: 10.1148/radiol.233234.
[13]
KWIECINSKI J, TZOLOS E, WILLIAMS M C, et al. Noninvasive coronary atherosclerotic plaque imaging[J]. JACC Cardiovasc Imaging, 2023, 16(12): 1608-1622. DOI: 10.1016/j.jcmg.2023.08.021.
[14]
TOTZECK M, AIDE N, BAUERSACHS J, et al. Nuclear medicine in the assessment and prevention of cancer therapy-related cardiotoxicity: prospects and proposal of use by the European Association of Nuclear Medicine (EANM)[J]. Eur J Nucl Med Mol Imaging, 2023, 50(3): 792-812. DOI: 10.1007/s00259-022-05991-7.
[15]
BECKER M M C, ARRUDA G F A, BERENGUER D R F, et al. Anthracycline cardiotoxicity: current methods of diagnosis and possible role of 18F-FDG PET/CT as a new biomarker[J/OL]. Cardiooncology, 2023, 9(1): 17 [2025-07-28]. https://pubmed.ncbi.nlm.nih.gov/36973762/. DOI: 10.1186/s40959-023-00161-6.
[16]
TONG J L, VOGIATZAKIS N, ANDRES M S, et al. Complementary use of cardiac magnetic resonance and 18 F-FDG positron emission tomography imaging in suspected immune checkpoint inhibitor myocarditis[J/OL]. Cardiooncology, 2024, 10(1): 53 [2025-07-28]. https://pubmed.ncbi.nlm.nih.gov/39175028/. DOI: 10.1186/s40959-024-00250-0.
[17]
ČELUTKIENĖ J, PUDIL R, LÓPEZ-FERNÁNDEZ T, et al. Role of cardiovascular imaging in cancer patients receiving cardiotoxic therapies: a position statement on behalf of the Heart Failure Association (HFA), the European Association of Cardiovascular Imaging (EACVI) and the Cardio-Oncology Council of the European Society of Cardiology (ESC)[J]. Eur J Heart Fail, 2020, 22(9): 1504-1524. DOI: 10.1002/ejhf.1957.
[18]
HERRMANN J, LENIHAN D, ARMENIAN S, et al. Defining cardiovascular toxicities of cancer therapies: an International Cardio-Oncology Society (IC-OS) consensus statement[J]. Eur Heart J, 2022, 43(4): 280-299. DOI: 10.1093/eurheartj/ehab674.
[19]
RAISI-ESTABRAGH Z, MURPHY A C, RAMALINGAM S, et al. Cardiovascular considerations before cancer therapy: gaps in evidence and JACC: CardioOncology expert panel recommendations[J]. JACC CardioOncol, 2024, 6(5): 631-654. DOI: 10.1016/j.jaccao.2024.07.017.
[20]
NIELSEN M Ø, LJOKI A, ZERAHN B, et al. Reproducibility and repeatability in focus: evaluating LVEF measurements with 3D echocardiography by medical technologists[J/OL]. Diagnostics (Basel), 2024, 14(16): 1729 [2025-07-28]. https://pubmed.ncbi.nlm.nih.gov/39202217/. DOI: 10.3390/diagnostics14161729.
[21]
WENZEL J P, ALBRECHT J N, TOPRAK B, et al. Head-to-head comparison of cardiac magnetic resonance imaging and transthoracic echocardiography in the general population (MATCH)[J/OL]. Clin Res Cardiol, 2025 [2025-07-28]. https://pubmed.ncbi.nlm.nih.gov/40353872/. DOI: 10.1007/s00392-025-02660-1.
[22]
AMMAR A, BOUATTANE O, YOUSSFI M. Automatic cardiac cine MRI segmentation and heart disease classification[J/OL]. Comput Med Imaging Graph, 2021, 88: 101864 [2025-07-28]. https://pubmed.ncbi.nlm.nih.gov/33485057/. DOI: 10.1016/j.compmedimag.2021.101864.
[23]
FADIL H, TOTMAN J J, HAUSENLOY D J, et al. A deep learning pipeline for automatic analysis of multi-scan cardiovascular magnetic resonance[J/OL]. J Cardiovasc Magn Reson, 2021, 23(1): 47 [2025-07-28]. https://pubmed.ncbi.nlm.nih.gov/33896419/. DOI: 10.1186/s12968-020-00695-z.
[24]
KLEMENZ A C, REICHARDT L, GORODEZKY M, et al. Accelerated cardiac MRI with deep learning-based image reconstruction for cine imaging[J/OL]. Radiol Cardiothorac Imaging, 2024, 6(6): e230419 [2025-07-28]. https://pubmed.ncbi.nlm.nih.gov/39540821/. DOI: 10.1148/ryct.230419.
[25]
ASSADI H, ALABED S, LI R, et al. Development and validation of AI-derived segmentation of four-chamber cine cardiac magnetic resonance[J/OL]. Eur Radiol Exp, 2024, 8(1): 77 [2025-07-28]. https://pubmed.ncbi.nlm.nih.gov/38992116/. DOI: 10.1186/s41747-024-00477-7.
[26]
MIKAIL N, CHEQUER R, IMPERIALE A, et al. Tales from the future-nuclear cardio-oncology, from prediction to diagnosis and monitoring[J]. Eur Heart J Cardiovasc Imaging, 2023, 24(9): 1129-1145. DOI: 10.1093/ehjci/jead168.
[27]
LOPEZ-MATTEI J, YANG E H, BALDASSARRE L A, et al. Cardiac computed tomographic imaging in cardio-oncology: an expert consensus document of the Society of Cardiovascular Computed Tomography (SCCT). Endorsed by the International Cardio-Oncology Society (ICOS)[J]. J Cardiovasc Comput Tomogr, 2023, 17(1): 66-83. DOI: 10.1016/j.jcct.2022.09.002.
[28]
SHEN Y H, ZHANG H, ZHANG Q L, et al. Right ventricular ejection fraction assessed by three-dimensional echocardiography is associated with long-term adverse clinical cardiac events in patients with anthracycline-induced cardiotoxicity[J/OL]. J Am Soc Echocardiogr, 2022, 35(6): 600-608.e3 [2025-07-28]. https://pubmed.ncbi.nlm.nih.gov/35158050/. DOI: 10.1016/j.echo.2022.01.018.
[29]
ROSSETTO L, DI LISI D, MADAUDO C, et al. Right ventricle involvement in patients with breast cancer treated with chemotherapy[J/OL]. Cardiooncology, 2024, 10(1): 24 [2025-07-28]. https://pubmed.ncbi.nlm.nih.gov/38616279/. DOI: 10.1186/s40959-024-00224-2.
[30]
PALAZZUOLI A, CORREALE M, IACOVIELLO M, et al. Does the measurement of ejection fraction still make sense in the HFpEF framework? what recent trials suggest[J/OL]. J Clin Med, 2023, 12(2): 693 [2025-07-28]. https://pubmed.ncbi.nlm.nih.gov/36675622/. DOI: 10.3390/jcm12020693.
[31]
SMISETH O A, RIDER O, CVIJIC M, et al. Myocardial strain imaging: theory, current practice, and the future[J]. JACC Cardiovasc Imaging, 2025, 18(3): 340-381. DOI: 10.1016/j.jcmg.2024.07.011.
[32]
NEGISHI K, NEGISHI T, HARE J L, et al. Independent and incremental value of deformation indices for prediction of trastuzumab-induced cardiotoxicity[J]. J Am Soc Echocardiogr, 2013, 26(5): 493-498. DOI: 10.1016/j.echo.2013.02.008.
[33]
MARWICK T H, DEWAR E, NOLAN M, et al. Strain surveillance during chemotherapy to improve cardiovascular outcomes: the SUCCOUR-MRI trial[J]. Eur Heart J, 2024, 45(41): 4414-4424. DOI: 10.1093/eurheartj/ehae574.
[34]
ARAUJO-GUTIERREZ R, CHITTURI K R, XU J Q, et al. Baseline global longitudinal strain predictive of anthracycline-induced cardiotoxicity[J/OL]. Cardiooncology, 2021, 7(1): 4 [2025-07-28]. https://pubmed.ncbi.nlm.nih.gov/33517910/. DOI: 10.1186/s40959-021-00090-2.
[35]
ZHAO X Y, ZHAO X X, JIN F W, et al. Prognostic value of cardiac-MRI scar heterogeneity combined with left ventricular strain in patients with myocardial infarction[J]. J Magn Reson Imaging, 2023, 58(2): 466-476. DOI: 10.1002/jmri.28478.
[36]
JANWETCHASIL P, YINDEENGAM A, KRITTAYAPHONG R. Prognostic value of global longitudinal strain in patients with preserved left ventricular systolic function: a cardiac magnetic resonance real-world study[J/OL]. J Cardiovasc Magn Reson, 2024, 26(2): 101057 [2025-07-28]. https://pubmed.ncbi.nlm.nih.gov/38971500/. DOI: 10.1016/j.jocmr.2024.101057.
[37]
YANG W J, XU J, ZHU L Y, et al. Myocardial strain measurements derived from MR feature-tracking: influence of sex, age, field strength, and vendor[J]. JACC Cardiovasc Imaging, 2024, 17(4): 364-379. DOI: 10.1016/j.jcmg.2023.05.019.
[38]
FOLCO G, MONTI C B, ZANARDO M, et al. MRI-derived extracellular volume as a biomarker of cancer therapy cardiotoxicity: systematic review and meta-analysis[J]. Eur Radiol, 2024, 34(4): 2699-2710. DOI: 10.1007/s00330-023-10260-8.
[39]
MOHAMED A A, ELMANCY L Y, ABULOLA S M, et al. Assessment of native myocardial T1 mapping for early detection of anthracycline-induced cardiotoxicity in patients with cancer: a systematic review and meta-analysis[J]. Cardiovasc Toxicol, 2024, 24(6): 563-575. DOI: 10.1007/s12012-024-09866-1.
[40]
JORDAN J H, VASU S, MORGAN T M, et al. Anthracycline-associated T1 mapping characteristics are elevated independent of the presence of cardiovascular comorbidities in cancer survivors[J/OL]. Circ Cardiovasc Imaging, 2016, 9(8): e004325 [2025-07-28]. https://pubmed.ncbi.nlm.nih.gov/27502058/. DOI: 10.1161/CIRCIMAGING.115.004325.
[41]
MAWAD W, MERTENS L, PAGANO J J, et al. Effect of anthracycline therapy on myocardial function and markers of fibrotic remodelling in childhood cancer survivors[J]. Eur Heart J Cardiovasc Imaging, 2021, 22(4): 435-442. DOI: 10.1093/ehjci/jeaa093.
[42]
JUHASZ V, QUINAGLIA T, DROBNI Z D, et al. Atorvastatin and myocardial extracellular volume expansion during anthracycline-based chemotherapy[J]. JACC CardioOncol, 2025, 7(2): 125-137. DOI: 10.1016/j.jaccao.2024.11.008.
[43]
HONG Y J, KIM T K, HONG D, et al. Myocardial characterization using dual-energy CT in doxorubicin-induced DCM: comparison with CMR T1-mapping and histology in a rabbit model[J]. JACC Cardiovasc Imaging, 2016, 9(7): 836-845. DOI: 10.1016/j.jcmg.2015.12.018.
[44]
GALÁN-ARRIOLA C, LOBO M, VÍLCHEZ-TSCHISCHKE J P, et al. Serial magnetic resonance imaging to identify early stages of anthracycline-induced cardiotoxicity[J]. J Am Coll Cardiol, 2019, 73(7): 779-791. DOI: 10.1016/j.jacc.2018.11.046.
[45]
LIU Q, LI S Y, QIU Y R, et al. Cardiovascular toxicity of tyrosine kinase inhibitors during cancer treatment: Potential involvement of TRPM7[J/OL]. Front Cardiovasc Med, 2023, 10: 1002438 [2025-07-28]. https://pubmed.ncbi.nlm.nih.gov/36818331/. DOI: 10.3389/fcvm.2023.1002438.
[46]
WONG-SIEGEL J R, HAYASHI R J, FORAKER R, et al. Cardiovascular toxicities after anthracycline and VEGF-targeted therapies in adolescent and young adult cancer survivors[J/OL]. Cardiooncology, 2023, 9(1): 30 [2025-07-28]. https://pubmed.ncbi.nlm.nih.gov/37420285/. DOI: 10.1186/s40959-023-00181-2.
[47]
ZHAO C N, XU S, YANG Y R, et al. Intersection of cardio-oncology: an overview of radiation-induced heart disease in the context of tumors[J/OL]. J Am Heart Assoc, 2025, 14(10): e040937 [2025-07-28]. https://pubmed.ncbi.nlm.nih.gov/40357679/. DOI: 10.1161/JAHA.124.040937.
[48]
BOROWIEC A, OZDOWSKA P, ROSINSKA M, et al. Coronary artery calcium score and other risk factors in patients at moderate and high risk of cancer therapy-related cardiovascular toxicity[J/OL]. Cardiooncology, 2024, 10(1): 64 [2025-07-28]. https://pubmed.ncbi.nlm.nih.gov/39342402/. DOI: 10.1186/s40959-024-00266-6.
[49]
SHEN H S, LIAN Y B, YIN J X, et al. Cardiovascular risk stratification by automatic coronary artery calcium scoring on pretreatment chest computed tomography in diffuse large B-cell lymphoma receiving anthracycline-based chemotherapy: a multicenter study[J/OL]. Circ Cardiovasc Imaging, 2023, 16(2): e014829 [2025-07-28]. https://pubmed.ncbi.nlm.nih.gov/36748459/. DOI: 10.1161/CIRCIMAGING.122.014829.
[50]
DISCHARGE TRIAL GROUP, MAUROVICH-HORVAT P, BOSSERDT M, et al. CT or invasive coronary angiography in stable chest pain[J]. N Engl J Med, 2022, 386(17): 1591-1602. DOI: 10.1056/nejmoa2200963.
[51]
KANG S H, KIM S H, KIM S H, et al. Performance of a novel CT-derived fractional flow reserve measurement to detect hemodynamically significant coronary stenosis[J/OL]. J Korean Med Sci, 2023, 38(32): e254 [2025-07-28]. https://pubmed.ncbi.nlm.nih.gov/37582501/. DOI: 10.3346/jkms.2023.38.e254.
[52]
RICCI F, KHANJI M Y, BISACCIA G, et al. Diagnostic and prognostic value of stress cardiovascular magnetic resonance imaging in patients with known or suspected coronary artery disease: a systematic review and meta-analysis[J]. JAMA Cardiol, 2023, 8(7): 662-673. DOI: 10.1001/jamacardio.2023.1290.
[53]
FU Q, ALABED S, HOOLE S P, et al. Prognostic value of stress perfusion cardiac MRI in cardiovascular disease: a systematic review and meta-analysis of the effects of the scanner, stress agent, and analysis technique[J/OL]. Radiol Cardiothorac Imaging, 2024, 6(3): e230382 [2025-07-28]. https://pubmed.ncbi.nlm.nih.gov/38814186/. DOI: 10.1148/ryct.230382.
[54]
SHEN H S, ZHOU W Q, CHUNRONGTU, et al. Thoracic aorta injury detected by 4D flow MRI predicts subsequent main adverse cardiovascular events in breast cancer patients receiving anthracyclines: a longitudinal study[J/OL]. Magn Reson Imaging, 2024, 109: 67-73 [2025-07-28]. https://pubmed.ncbi.nlm.nih.gov/38484947/. DOI: 10.1016/j.mri.2024.03.010.
[55]
YAN J J, LIU S Y, GE H X, et al. Research progress in clinical diagnosis and treatment of immune checkpoint inhibitor-associated myocarditis[J]. Chin Circ J, 2025, 40(2): 197-202. DOI: 10.3969/j.issn.1000-3614.2025.02.014.
[56]
SALEM J E, MANOUCHEHRI A, MOEY M, et al. Cardiovascular toxicities associated with immune checkpoint inhibitors: an observational, retrospective, pharmacovigilance study[J]. Lancet Oncol, 2018, 19(12): 1579-1589. DOI: 10.1016/S1470-2045(18)30608-9.
[57]
MAHMOOD S S, FRADLEY M G, COHEN J V, et al. Myocarditis in patients treated with immune checkpoint inhibitors[J]. J Am Coll Cardiol, 2018, 71(16): 1755-1764. DOI: 10.1016/j.jacc.2018.02.037.
[58]
ZHANG L L, AWADALLA M, MAHMOOD S S, et al. Cardiovascular magnetic resonance in immune checkpoint inhibitor-associated myocarditis[J]. Eur Heart J, 2020, 41(18): 1733-1743. DOI: 10.1093/eurheartj/ehaa051.
[59]
ZHAO S H, YUN H, CHEN C Z, et al. The prognostic value of global myocardium strain by CMR-feature tracking in immune checkpoint inhibitor-associated myocarditis[J]. Eur Radiol, 2022, 32(11): 7657-7667. DOI: 10.1007/s00330-022-08844-x.
[60]
FERREIRA V M, SCHULZ-MENGER J, HOLMVANG G, et al. Cardiovascular magnetic resonance in nonischemic myocardial inflammation expert recommendations[J]. J Am Coll Cardiol, 2018, 72(24): 3158-3176. DOI: 10.1016/j.jacc.2018.09.072.
[61]
YANG F Y, WANG J, LI W H, et al. The prognostic value of late gadolinium enhancement in myocarditis and clinically suspected myocarditis: systematic review and meta-analysis[J]. Eur Radiol, 2020, 30(5): 2616-2626. DOI: 10.1007/s00330-019-06643-5.
[62]
THAVENDIRANATHAN P, ZHANG L L, ZAFAR A, et al. Myocardial T1 and T2 mapping by magnetic resonance in patients with immune checkpoint inhibitor-associated myocarditis[J]. J Am Coll Cardiol, 2021, 77(12): 1503-1516. DOI: 10.1016/j.jacc.2021.01.050.
[63]
QUINAGLIA T, GONGORA C, AWADALLA M, et al. Global circumferential and radial strain among patients with immune checkpoint inhibitor myocarditis[J]. JACC Cardiovasc Imaging, 2022, 15(11): 1883-1896. DOI: 10.1016/j.jcmg.2022.06.014.
[64]
FINKE D, HECKMANN M B, HERPEL E, et al. Early detection of checkpoint inhibitor-associated myocarditis using 68Ga-FAPI PET/CT[J/OL]. Front Cardiovasc Med, 2021, 8: 614997 [2025-07-28]. https://pubmed.ncbi.nlm.nih.gov/33718446/. DOI: 10.3389/fcvm.2021.614997.
[65]
BOUGHDAD S, LATIFYAN S, FENWICK C, et al. 68Ga-DOTATOC PET/CT to detect immune checkpoint inhibitor-related myocarditis[J/OL]. J Immunother Cancer, 2021, 9(10): e003594 [2025-07-28]. https://pubmed.ncbi.nlm.nih.gov/34686542/. DOI: 10.1136/jitc-2021-003594.
[66]
RAVINDRAN J, BRIEGER D. Clinical perspectives: takotsubo cardiomyopathy[J]. Intern Med J, 2024, 54(11): 1785-1795. DOI: 10.1111/imj.16493.
[67]
TINI G, ARCARI L, MISTRULLI R, et al. A contemporary update on cancer and takotsubo syndrome[J/OL]. Front Cardiovasc Med, 2024, 10: 1301383 [2025-07-28]. https://pubmed.ncbi.nlm.nih.gov/38259302/. DOI: 10.3389/fcvm.2023.1301383.
[68]
ARCARI L, CAMASTRA G, CIOLINA F, et al. Myocardial oedema contributes to interstitial expansion and associates with mechanical and electrocardiographic changes in takotsubo syndrome: a CMR T1 and T2 mapping study[J]. Eur Heart J Cardiovasc Imaging, 2023, 24(8): 1082-1091. DOI: 10.1093/ehjci/jead035.
[69]
COMMITTEE W, KITTLESON M M, RUBERG F L, et al. 2023 ACC expert consensus decision pathway on comprehensive multidisciplinary care for the patient with cardiac amyloidosis: a report of the American college of cardiology solution set oversight committee[J]. J Am Coll Cardiol, 2023, 81(11): 1076-1126. DOI: 10.1016/j.jacc.2022.11.022.
[70]
LEITCH H A, BUCKSTEIN R. How I treat iron overload in adult MDS[J]. Blood, 2025, 145(4): 383-396. DOI: 10.1182/blood.2023022501.
[71]
ALWAN L, BENZ D C, CUDDY S A M, et al. Current and evolving multimodality cardiac imaging in managing transthyretin amyloid cardiomyopathy[J]. JACC Cardiovasc Imaging, 2024, 17(2): 195-211. DOI: 10.1016/j.jcmg.2023.10.010.
[72]
LIU Y M, WANG L J, ZHU J F, et al. Prognostic value of native T1 and extracellular volume in patients with immunoglubin light-chain amyloidosis[J/OL]. BMC Cardiovasc Disord, 2024, 24(1): 112 [2025-07-28]. https://pubmed.ncbi.nlm.nih.gov/38365569/. DOI: 10.1186/s12872-024-03756-8.
[73]
JEROME S, FARRELL M B, WARREN J, et al. Cardiac amyloidosis imaging, part 3: interpretation, diagnosis, and treatment[J]. J Nucl Med Technol, 2023, 51(2): 102-116. DOI: 10.2967/jnmt.123.265492.
[74]
SALEEM M, SADAT B, VAN HARN M, et al. Towards a diagnosis of cardiac amyloidosis: single center experience with 99m technetium pyrophosphate planar imaging and opportunities for standardization of diagnostic workflow[J/OL]. Medicina (Kaunas), 2023, 59(2): 378 [2025-07-28]. https://pubmed.ncbi.nlm.nih.gov/36837580/. DOI: 10.3390/medicina59020378.
[75]
KREMASTINOS D T, FARMAKIS D. Iron overload cardiomyopathy in clinical practice[J]. Circulation, 2011, 124(20): 2253-2263. DOI: 10.1161/CIRCULATIONAHA.111.050773.
[76]
CADOUR F, ERNST O, DACHER J N. Can cardiac magnetic resonance imaging be used as a screening tool for iron overload?[J]. Diagn Interv Imaging, 2023, 104(11): 519-520. DOI: 10.1016/j.diii.2023.08.004.
[77]
MAVROGENI S, PEPE A, LOMBARDI M. Evaluation of myocardial iron overload using cardiovascular magnetic resonance imaging[J]. Hellenic J Cardiol, 2011, 52(5): 385-390.
[78]
LEE C, HAHN R T. Valvular heart disease associated with radiation therapy: a contemporary review[J/OL]. Struct Heart, 2022, 7(2): 100104 [2025-07-28]. https://pubmed.ncbi.nlm.nih.gov/37275597/. DOI: 10.1016/j.shj.2022.100104.
[79]
VAHANIAN A, BEYERSDORF F, PRAZ F, et al. 2021 ESC/EACTS Guidelines for the management of valvular heart disease[J]. Eur Heart J, 2022, 43(7): 561-632. DOI: 10.1093/eurheartj/ehab395.
[80]
Structural Cardiology Committee of Cardiovascular Physicians Branch; Chinese Medical Doctor Association, Asia Pacific Structural Heart Disease Club. 2024 expert consensus on clinical pathway for transcatheter aortic valve replacement in China[J]. Chin J Clin Thorac Cardiovasc Surg, 2024, 31(12): 1713-1727. DOI: 10.3969/j.issn.1000-3614.2024.11.001.
[81]
DORMAND E L, BANWELL P E, GOODACRE T E E. Radiotherapy and wound healing[J]. Int Wound J, 2005, 2(2): 112-127. DOI: 10.1111/j.1742-4801.2005.00079.x.
[82]
NOGUCHI M, TABATA M, ITO J, et al. Midterm outcomes of transcatheter aortic valve replacement in patients with active cancer[J/OL]. Open Heart, 2024, 11(1): e002573 [2025-07-28]. https://pubmed.ncbi.nlm.nih.gov/38417913/. DOI: 10.1136/openhrt-2023-002573.
[83]
FELIX N, NOGUEIRA A, CARVALHO P E P, et al. Outcomes of patients with active cancer after transcatheter aortic valve replacement: an updated meta-analysis[J/OL]. Cardiooncology, 2024, 10(1): 55 [2025-07-28]. https://pubmed.ncbi.nlm.nih.gov/39252142/. DOI: 10.1186/s40959-024-00256-8.
[84]
BISSELL M M, RAIMONDI F, ALI L A, et al. 4D Flow cardiovascular magnetic resonance consensus statement: 2023 update[J/OL]. J Cardiovasc Magn Reson, 2023, 25(1): 40 [2025-07-28]. https://pubmed.ncbi.nlm.nih.gov/37474977/. DOI: 10.1186/s12968-023-00942-z.
[85]
ADLER Y, CHARRON P, IMAZIO M, et al. 2015 ESC Guidelines for the diagnosis and management of pericardial diseases: The Task Force for the Diagnosis and Management of Pericardial Diseases of the European Society of Cardiology (ESC)Endorsed by: The European Association for Cardio-Thoracic Surgery (EACTS)[J]. Eur Heart J, 2015, 36(42): 2921-2964. DOI: 10.1093/eurheartj/ehv318.
[86]
LORENZO-ESTELLER L, RAMOS-POLO R, PONS RIVEROLA A, et al. Pericardial disease in patients with cancer: clinical insights on diagnosis and treatment[J/OL]. Cancers (Basel), 2024, 16(20): 3466 [2025-07-28]. https://pubmed.ncbi.nlm.nih.gov/39456560/. DOI: 10.3390/cancers16203466.
[87]
KLEIN A L, WANG T K M, CREMER P C, et al. Pericardial diseases: international position statement on new concepts and advances in multimodality cardiac imaging[J]. JACC Cardiovasc Imaging, 2024, 17(8): 937-988. DOI: 10.1016/j.jcmg.2024.04.010.
[88]
RESTELLI D, CARERJ M L, BELLA G D, et al. Constrictive pericarditis: an update on noninvasive multimodal diagnosis[J]. J Cardiovasc Echogr, 2023, 33(4): 161-170. DOI: 10.4103/jcecho.jcecho_61_23.
[89]
ANTONOPOULOS A S, VRETTOS A, ANDROULAKIS E, et al. Cardiac magnetic resonance imaging of pericardial diseases: a comprehensive guide[J]. Eur Heart J Cardiovasc Imaging, 2023, 24(8): 983-998. DOI: 10.1093/ehjci/jead092.
[90]
ANGELI F, BODEGA F, BERGAMASCHI L, et al. Multimodality imaging in the diagnostic work-up of patients with cardiac masses: JACC: CardioOncology state-of-the-art review[J]. JACC CardioOncol, 2024, 6(6): 847-862. DOI: 10.1016/j.jaccao.2024.09.006.
[91]
PAOLISSO P, BERGAMASCHI L, ANGELI F, et al. Cardiac magnetic resonance to predict cardiac mass malignancy: the CMR mass score[J/OL]. Circ Cardiovasc Imaging, 2024, 17(3): e016115 [2025-07-28]. https://pubmed.ncbi.nlm.nih.gov/38502734/. DOI: 10.1161/CIRCIMAGING.123.016115.
[92]
WANG Y J, YANG K, WEN Y, et al. Screening and diagnosis of cardiovascular disease using artificial intelligence-enabled cardiac magnetic resonance imaging[J]. Nat Med, 2024, 30(5): 1471-1480. DOI: 10.1038/s41591-024-02971-2.

PREV Progress of HRMR-VWI in the evaluation and follow-up of endovascular treatment of intracranial aneurysms
NEXT Research progress of multimodal cardiac magnetic resonance in the evaluation of left ventricular remodeling after coronary artery bypass grafting
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn