Share:
Share this content in WeChat
X
Review
Research progress of multimodal cardiac magnetic resonance in the evaluation of left ventricular remodeling after coronary artery bypass grafting
BAN Chao  QIAN Xinyu  NIU Ruilong  GE Lihong 

Cite this article as: BAN C, QIAN X Y, NIU R L, et al. Research progress of multimodal cardiac magnetic resonance in the evaluation of left ventricular remodeling after coronary artery bypass grafting[J]. Chin J Magn Reson Imaging, 2025, 16(10): 157-163. DOI:10.12015/issn.1674-8034.2025.10.025.


[Abstract] Coronary artery bypass grafting (CABG) is an important surgical intervention for treating severe coronary artery disease. Postoperative left ventricular remodeling has a profound impact on patients' long-term prognosis, especially regarding the evolution of left ventricular function and the progression of myocardial fibrosis. In recent years, multimodal cardiac magnetic resonance (CMR) has emerged as a crucial tool for studying the mechanisms and prognosis of left ventricular remodeling after CABG, thanks to its non-invasiveness, high resolution, and ability for multi-parameter quantitative assessment. This article systematically reviews the application value of multimodal CMR techniques in postoperative evaluation, focusing on the latest research progress of quantitative myocardial perfusion, late gadolinium enhancement, cardiac magnetic resonance feature tracking, T1/T2 mapping, and oxygen-sensitive cardiovascular magnetic resonance in assessing postoperative myocardial function recovery, fibrosis degree, and predicting prognosis.It also summarizes the limitations and complementarity of current multimodal CMR technology in the research on post-CABG evaluation, and proposes that future research should focus on the optimization of technical standardization, large-sample multicenter verification, and in-depth integration with clinical treatment decisions. This review aims to provide a reference for the standardized application of multimodal CMR techniques in the clinical evaluation of post-CABG patients, and contribute to improving the individualized diagnosis and treatment as well as long-term prognosis management of post-CABG patients.
[Keywords] coronary artery bypass grafting;left ventricular remodeling;oxygen-sensitive cardiovascular magnetic resonance;magnetic resonance imaging

BAN Chao   QIAN Xinyu   NIU Ruilong   GE Lihong*  

Department of Imaging Diagnosis, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China

Corresponding author: GE L H, E-mail: Lchest@126.com

Conflicts of interest   None.

Received  2025-07-29
Accepted  2025-09-30
DOI: 10.12015/issn.1674-8034.2025.10.025
Cite this article as: BAN C, QIAN X Y, NIU R L, et al. Research progress of multimodal cardiac magnetic resonance in the evaluation of left ventricular remodeling after coronary artery bypass grafting[J]. Chin J Magn Reson Imaging, 2025, 16(10): 157-163. DOI:10.12015/issn.1674-8034.2025.10.025.

[1]
TIMMIS A, KAZAKIEWICZ D, TOWNSEND N, et al. Global epidemiology of acute coronary syndromes[J]. Nat Rev Cardiol, 2023, 20(11): 778-788. DOI: 10.1038/s41569-023-00884-0.
[2]
ZHU Y P, ZHANG W, DIMAGLI A, et al. Antiplatelet therapy after coronary artery bypass surgery: five year follow-up of randomised DACAB trial[J/OL]. BMJ, 2024, 385: e075707 [2025-07-28]. https://pubmed.ncbi.nlm.nih.gov/38862179/. DOI: 10.1136/bmj-2023-075707.
[3]
WANG H, ZHANG B, WU W C, et al. Change of left ventricular geometric pattern in patients with preserved ejection fraction undergoing coronary artery bypass grafting[J]. J Cardiovasc Transl Res, 2022, 15(6): 1444-1454. DOI: 10.1007/s12265-022-10249-6.
[4]
ZOZOMOVÁ-LIHOVÁ J, ŠLENKER M, ŠINGLIAROVÁ B, et al. Multiple hybrid zones involving four Cardamine species and their triploid progeny: watching allopolyploid speciation in action?[J/OL]. New Phytol, 2025 [2025-07-28]. https://pubmed.ncbi.nlm.nih.gov/40974214/. DOI: 10.1111/nph.70575.
[5]
PEZZINI S, DAUS F, GALLI G, et al. Cardiac magnetic resonance in heart failure: diagnostic and prognostic assessments[J/OL]. J Cardiovasc Dev Dis, 2025, 12(6): 200 [2025-07-28]. https://pubmed.ncbi.nlm.nih.gov/40558635/. DOI: 10.3390/jcdd12060200.
[6]
MELONI A, NUGARA C, DE LUCA A, et al. Absence of long-term incremental prognostic value of inducible wall motion abnormalities on dipyridamole stress CMR in patients with suspected or known coronary artery disease[J]. Eur Radiol, 2025, 35(3): 1687-1696. DOI: 10.1007/s00330-024-11229-x.
[7]
RADJENOVIC A, CHRISTODOULOU A G. Editorial: Simultaneous multiparametric and multidimensional cardiovascular magnetic resonance imaging[J/OL]. Front Cardiovasc Med, 2023, 10: 1205994 [2025-07-28]. https://pubmed.ncbi.nlm.nih.gov/37342436/. DOI: 10.3389/fcvm.2023.1205994.
[8]
EMAMZADEHASHEMI K R, KHANGHAH A G, AZIZI A, et al. Quality of life and activities of daily living one year after Coronary Artery Bypass Graft (CABG) surgery: a cross-sectional study[J/OL]. J Cardiothorac Surg, 2024, 19(1): 367 [2025-07-28]. https://pubmed.ncbi.nlm.nih.gov/38915074/. DOI: 10.1186/s13019-024-02848-y.
[9]
LAWTON J S, TAMIS-HOLLAND J E, BANGALORE S, et al. 2021 ACC/AHA/SCAI guideline for coronary artery revascularization: executive summary a report of the American college of cardiology/American heart association joint committee on clinical practice guidelines[J]. J Am Coll Cardiol, 2022, 79(2): 197-215. DOI: 10.1016/j.jacc.2021.09.005.
[10]
KARIM M ALI. A systematic review and meta-analysis of percutaneous coronary intervention (PCI) and coronary bypass grafting (CABG) outcomes in indigenous vs. non-indigenous australians[J/OL]. Cureus, 2024 [2025-07-28]. https://pubmed.ncbi.nlm.nih.gov/38741877/. DOI: 10.7759/cureus.58172.
[11]
CREA F. Percutaneous coronary intervention vs. coronary artery bypass graft: the Saga continues[J]. Eur Heart J, 2022, 43(13): 1273-1276. DOI: 10.1093/eurheartj/ehac118.
[12]
HWEIDI I M, ZYTOON A M, HAYAJNEH A A, et al. The effect of intraoperative glycemic control on surgical site infections among diabetic patients undergoing coronary artery bypass graft (CABG) surgery[J/OL]. Heliyon, 2021, 7(12): e08529 [2025-07-28]. https://pubmed.ncbi.nlm.nih.gov/34926859/. DOI: 10.1016/j.heliyon.2021.e08529.
[13]
KOSHY A, GIUSTINO G, SARTOTI S, et al. Outcomes following percutaneous coronary intervention (PCI) in patients with multivessel coronary artery disease declining or non-eligible for coronary artery bypass graft surgery (CABG)[J/OL]. Heart Lung Circ, 2023, 32: S443 [2025-07-28]. https://www.heartlungcirc.org/article/S1443-9506(23)03940-9/fulltext. DOI: 10.1016/j.hlc.2023.06.674.
[14]
DUAN L W, LEE M S, DOCTOR J N, et al. Addressing unmeasured confounding bias with a prior knowledge guided approach: coronary artery bypass grafting (CABG) versus percutaneous coronary intervention (PCI) in patients with stable ischemic heart disease[J]. Health Serv Outcomes Res Methodol, 2023, 23(1): 59-79. DOI: 10.1007/s10742-022-00282-y.
[15]
FAKHRZAD N, BAROUNI M, GOUDARZI R, et al. Cost-effectiveness analysis of coronary arteries bypass grafting (CABG) and percutaneous coronary intervention (PCI) through drug stent in Iran: a comparative study[J/OL]. Cost Eff Resour Alloc, 2023, 21(1): 16 [2025-07-28]. https://pubmed.ncbi.nlm.nih.gov/36793078/. DOI: 10.1186/s12962-023-00426-y.
[16]
SERRUYS P, MASUDA S, NINOMIYA K, et al. TCT-104 impact of left ventricular ejection fraction (EF) on 10-year mortality after percutaneous coronary intervention (PCI) or coronary artery bypass grafting (CABG): is CABG safer than PCI in all patients with reduced EF?[J/OL]. J Am Coll Cardiol, 2022, 80(12): B42-B43 [2025-07-28] https://www.jacc.org/doi/10.1016/j.jacc.2022.08.126. DOI: 10.1016/j.jacc.2022.08.126.
[17]
FU W, ZHAO Y, ZHANG K, et al. Retrospective, observational analysis of cardiac function associated with global preoperative myocardial scar in patients with ischemic cardiomyopathy after coronary artery bypass grafting[J]. J Thorac Dis, 2022, 14(11): 4319-4328. DOI: 10.21037/jtd-22-846.
[18]
BANNING A P, SERRUYS P, DE MARIA G L, et al. Five-year outcomes after state-of-the-art percutaneous coronary revascularization in patients with de novo three-vessel disease: final results of the SYNTAX II study[J]. Eur Heart J, 2022, 43(13): 1307-1316. DOI: 10.1093/eurheartj/ehab703.
[19]
NTINOPOULOS V, PAPADOPOULOS N, ODAVIC D, et al. Ejection fraction recovery after coronary artery bypass grafting for ischemic cardiomyopathy[J]. Thorac Cardiovasc Surg, 2022, 70(7): 544-548. DOI: 10.1055/s-0041-1736246.
[20]
BAN C, MA X Y, WANG J, et al. Comparative study of cardiac function changes before and after coronary artery bypass grafting based on MRI[J]. Chin J Magn Reson Imag, 2023, 14(3): 95-99, 116. DOI: 10.12015/issn.1674-8034.2023.03.016.
[21]
TANG Y, ZHAO S H. The interpretation of 2022 Society for Cardiovascular Magnetic Resonance(SCMR) guidelines for reporting cardiovascular magnetic resonance examinations[J]. Chin J Magn Reson Imag, 2022, 13(11): 42-47, 52. DOI: 10.12015/issn.1674-8034.2022.11.008.
[22]
RAMAN S V, MARKL M, PATEL A R, et al. 30-minute CMR for common clinical indications: a Society for Cardiovascular Magnetic Resonance white paper[J/OL]. J Cardiovasc Magn Reson, 2022, 24(1): 13 [2025-07-28]. https://pubmed.ncbi.nlm.nih.gov/35232470/. DOI: 10.1186/s12968-022-00844-6.
[23]
GAROT J, PEZEL T. What if a patient has CAD? go to CMR![J]. Arch Cardiovasc Dis, 2021, 114(12): 765-767. DOI: 10.1016/j.acvd.2021.10.002.
[24]
ASSUNCAO-JR A N, ROCHITTE C E, KWONG R Y, et al. Bone marrow cells improve coronary flow reserve in ischemic nonrevascularized myocardium: a MiHeart/IHD quantitative perfusion CMR substudy[J]. JACC Cardiovasc Imaging, 2022, 15(5): 812-824. DOI: 10.1016/j.jcmg.2021.12.011.
[25]
SERAPHIM A, DOWSING B, RATHOD K S, et al. Quantitative myocardial perfusion predicts outcomes in patients with prior surgical revascularization[J]. J Am Coll Cardiol, 2022, 79(12): 1141-1151. DOI: 10.1016/j.jacc.2021.12.037.
[26]
ASSANTE R, ZAMPELLA E, D'ANTONIO A, et al. Impact on cardiovascular outcome of coronary revascularization-induced changes in ischemic perfusion defect and myocardial flow reserve[J]. Eur J Nucl Med Mol Imaging, 2024, 51(6): 1612-1621. DOI: 10.1007/s00259-023-06588-4.
[27]
ZHU E J, ZHANG C, WANG S W, et al. The association between myocardial scar and the response of moderate ischemic mitral regurgitation to isolated coronary artery bypass grafting[J/OL]. Ann Transl Med, 2021, 9(16): 1328 [2025-07-28]. https://pubmed.ncbi.nlm.nih.gov/34532465/. DOI: 10.21037/atm-21-3622.
[28]
PEZEL T, HOVASSE T, LEFÈVRE T, et al. Prognostic value of stress CMR in symptomatic patients with coronary stenosis on CCTA[J]. JACC Cardiovasc Imaging, 2022, 15(8): 1408-1422. DOI: 10.1016/j.jcmg.2022.03.008.
[29]
KNOTT K D, SERAPHIM A, AUGUSTO J B, et al. The prognostic significance of quantitative myocardial perfusion: an artificial intelligence-based approach using perfusion mapping[J]. Circulation, 2020, 141(16): 1282-1291. DOI: 10.1161/CIRCULATIONAHA.119.044666.
[30]
SAKUMA H, ISHIDA M. Advances in myocardial perfusion MR imaging: physiological implications, the importance of quantitative analysis, and impact on patient care in coronary artery disease[J]. Magn Reson Med Sci, 2022, 21(1): 195-211. DOI: 10.2463/mrms.rev.2021-0033.
[31]
KWONG R Y, CARDOSO R, JEROSCH-HEROLD M. Quantitative CMR perfusion in patients after CABG: emerging and promising evidence[J]. J Am Coll Cardiol, 2022, 79(12): 1152-1154. DOI: 10.1016/j.jacc.2022.01.025.
[32]
HAAF P, SEGEROTH M, BADERTSCHER P, et al. CMR 2-43 CMR LGE for assessment of accuracy of the ECG criteria of the fourth universal definition of myocardial infarction[J/OL]. J Cardiovasc Magn Reson, 2024, 26: 100125 [2025-07-28]. https://www.journalofcmr.com/article/S1097-6647(24)00116-9/fulltext. DOI: 10.1016/j.jocmr.2024.100125.
[33]
ARJOMANDI RAD A, TSERIOTI E, MAGOULIOTIS D E, et al. Assessment of myocardial viability in ischemic cardiomyopathy with reduced left ventricular function undergoing coronary artery bypass grafting[J/OL]. Clin Cardiol, 2024, 47(7): e24307 [2025-07-28]. https://pubmed.ncbi.nlm.nih.gov/38953367/. DOI: 10.1002/clc.24307.
[34]
CHEN W, LI S, ZHAO Y, et al. Prognostic value of left atrial volume and late gadolinium enhancement on cardiac magnetic resonance imaging in patients with coronary artery disease and severe left ventricular dysfunction underwent CABG[J]. Acad Radiol, 2024, 31(7): 2695-2703. DOI: 10.1016/j.acra.2024.03.034.
[35]
SANTINHA J, CORREIA T. CMR 2-58 RAMI: radiomics for LGE assessment of myocardial infarction and microvascular obstruction[J/OL]. J Cardiovasc Magn Reson, 2024, 26: 100140 [2025-07-28]. https://www.journalofcmr.com/article/S1097-6647(24)00131-5/fulltext. DOI: 10.1016/j.jocmr.2024.100140.
[36]
GONÇALVES T, PEZEL T, GAROT P, et al. CMR 2-76 prognostic impact of the extent, location, and pattern of late gadolinium enhancement (LGE) in dilated cardiomyopathy (DCM) and isolated left ventricular dilation patients[J/OL]. J Cardiovasc Magn Reson, 2024, 26: 100158 [2025-07-28]. https://www.journalofcmr.com/article/S1097-6647(24)00149-2/fulltext. DOI: 10.1016/j.jocmr.2024.100158.
[37]
UNGER A, TOUPIN S, GAROT P, et al. CMR 3-84 icm-lge-score: 5-years risk score to predict all-cause death using LGE features in ischemic cardiomyopathy[J/OL]. J Cardiovasc Magn Reson, 2024, 26: 100188 [2025-07-28]. https://www.journalofcmr.com/article/S1097-6647(24)00179-0/fulltext. DOI: 10.1016/j.jocmr.2024.100188.
[38]
LUND G K, LEPTIN S, RAGAB H, et al. Prognostic relevance of ischemic late gadolinium enhancement in apparently healthy endurance athletes: a follow-up study over 5 years[J/OL]. Sports Med Open, 2024, 10(1): 13 [2025-07-28]. https://pubmed.ncbi.nlm.nih.gov/38282168/. DOI: 10.1186/s40798-024-00680-1.
[39]
KONG H H, CAO J X, TIAN J F, et al. Evaluation of left ventricular diastolic function in patients with coronary microvascular dysfunction via cardiovascular magnetic resonance feature tracking[J]. Quant Imaging Med Surg, 2023, 13(10): 7281-7293. DOI: 10.21037/qims-23-47.
[40]
FUKAMACHI D, YAMADA A, OHGAKU A, et al. Protective effect of the Impella on the left ventricular function after acute broad anterior wall ST elevation myocardial infarctions with cardiogenic shock: cardiovascular magnetic resonance imaging strain analysis[J/OL]. BMC Cardiovasc Disord, 2022, 22(1): 201 [2025-07-28]. https://pubmed.ncbi.nlm.nih.gov/35484492/. DOI: 10.1186/s12872-022-02632-7.
[41]
LI X M, YAN W F, SHI K, et al. The worsening effect of paroxysmal atrial fibrillation on left ventricular function and deformation in type 2 diabetes mellitus patients: a 3.0 T cardiovascular magnetic resonance feature tracking study[J/OL]. Cardiovasc Diabetol, 2024, 23(1): 90 [2025-07-28]. https://pubmed.ncbi.nlm.nih.gov/38448890/. DOI: 10.1186/s12933-024-02176-4.
[42]
KIHLBERG J, GUPTA V, HARALDSSON H, et al. Clinical validation of three cardiovascular magnetic resonance techniques to measure strain and torsion in patients with suspected coronary artery disease[J/OL]. J Cardiovasc Magn Reson, 2020, 22(1): 83 [2025-07-28]. https://pubmed.ncbi.nlm.nih.gov/33280612/. DOI: 10.1186/s12968-020-00684-2.
[43]
CHENG N, CHENG L Q, WANG R, et al. The improvement of torsion assessed by cardiovascular magnetic resonance feature tracking after coronary artery bypass grafting: a sensitive index of cardiac function[J/OL]. Heart Surg Forum, 2017, 20(1): E026-E031 [2025-07-28]. https://pubmed.ncbi.nlm.nih.gov/28263147/. DOI: 10.1532/hsf.1655.
[44]
SHAABAN M, TANTAWY S, ELKAFRAWY F, et al. Kiosk 1R-TB-02 the role of ventricular torsion in the assessment of left ventricle functional recovery following acute ST segment elevation myocardial infarction: a cardiac magnetic resonance feature tracking study[J/OL]. J Cardiovasc Magn Reson, 2024, 26: 100382 [2025-07-28]. https://www.journalofcmr.com/article/S1097-6647(24)00373-9/fulltext. DOI: 10.1016/j.jocmr.2024.100382.
[45]
FISCHER K, OBRIST S J, ERNE S A, et al. Feature tracking myocardial strain incrementally improves prognostication in myocarditis beyond traditional CMR imaging features[J]. JACC Cardiovasc Imaging, 2020, 13(9): 1891-1901. DOI: 10.1016/j.jcmg.2020.04.025.
[46]
BATOUTY N M, TAWFIK A M, SOBH D M, et al. Global and regional cardiac magnetic resonance feature tracking left ventricular strain analysis in assessing early myocardial disease in β thalassemia major patients[J/OL]. J Cardiovasc Imaging, 2024, 32(1): 18 [2025-07-28]. https://pubmed.ncbi.nlm.nih.gov/39095928/. DOI: 10.1186/s44348-024-00026-1.
[47]
GEORGE K, GORCILOV J, HECKER T, et al. Gender differences in the evolution of echocardiographic HFpEF characteristics through age deciles: is menopause an inflection point?[J/OL]. Eur Heart J, 2024, 45(Supplement_1): ehae666.783 [2025-07-28]. https://academic.oup.com/eurheartj/article/45/Supplement_1/ehae666.783/7839161?login=false. DOI: 10.1093/eurheartj/ehae666.783.
[48]
FISCHER K, OBRIST S J, ERNE S A, et al. Feature tracking myocardial strain incrementally improves prognostication in myocarditis beyond traditional CMR imaging features[J]. JACC Cardiovasc Imaging, 2020, 13(9): 1891-1901. DOI: 10.1016/j.jcmg.2020.04.025.
[49]
HAO X Y, WU J, ZHU L N, et al. Evaluation of myocardial strain in patients with subclinical hypertrophic cardiomyopathy and subclinical Hypertensive Heart Disease using Cardiac magnetic resonance feature tracking[J]. Int J Cardiovasc Imaging, 2023, 39(11): 2237-2246. DOI: 10.1007/s10554-023-02930-x.
[50]
WANG C F, WANG L L, YIN J, et al. Direct comparison of coronary microvascular obstruction evaluation using CMR feature tracking and layer-specific speckle tracking echocardiography in STEMI patients[J]. Int J Cardiovasc Imaging, 2024, 40(2): 237-247. DOI: 10.1007/s10554-023-02998-5.
[51]
LI H, ZHENG Y, PENG X, et al. Heart failure with preserved ejection fraction in post myocardial infarction patients: a myocardial magnetic resonance (MR) tissue tracking study[J]. Quant Imaging Med Surg, 2023, 13(3): 1723-1739. DOI: 10.21037/qims-22-793.
[52]
PALMISANO A, BENEDETTI G, FALETTI R, et al. Early T1 myocardial MRI mapping: value in detecting myocardial hyperemia in acute myocarditis[J]. Radiology, 2020, 295(2): 316-325. DOI: 10.1148/radiol.2020191623.
[53]
DALLAZEN A R, REZENDE P C, HUEB W, et al. Myocardial microstructure assessed by T1 mapping after on-pump and off-pump coronary artery bypass grafting[J]. J Thorac Dis, 2023, 15(6): 3208-3217. DOI: 10.21037/jtd-23-101.
[54]
DALLAZEN A R, HUEB W, REZENDE P C, et al. P1832Myocardial injury assessed by T1 mapping after on-pump and off-pump coronary artery bypass grafting. a pre-specified analysis of mass V trial[J/OL]. Eur Heart J, 2019, 40(Supplement_1): ehz748.0584 [2025-07-28]. https://academic.oup.com/eurheartj/article-abstract/40/Supplement_1/ehz748.0584/5598163?login=false. DOI: 10.1093/eurheartj/ehz748.0584.
[55]
DALLAZEN A R, BOROS G A B, RIBAS F F, et al. Myocardial injury assessed by t1 mapping after on-pump and off-pump coronary artery bypass grafting: a pre-specified analysis of mass v trial[J/OL]. J Am Coll Cardiol, 2019, 73(9): 179 [2025-07-28]. https://www.jacc.org/doi/10.1016/S0735-1097%2819%2930787-9. DOI: 10.1016/S0735-1097(19)30787-9.
[56]
VERMES E, PANTALÉON C, AUVET A, et al. Cardiovascular magnetic resonance in heart transplant patients: diagnostic value of quantitative tissue markers: T2 mapping and extracellular volume fraction, for acute rejection diagnosis[J/OL]. J Cardiovasc Magn Reson, 2018, 20(1): 59 [2025-07-28]. https://pubmed.ncbi.nlm.nih.gov/30153847/. DOI: 10.1186/s12968-018-0480-9.
[57]
DE LUCA G, PALMISANO A, CAMPOCHIARO C, et al. Cardiac magnetic resonance in systemic sclerosis myocarditis: the value of T2 mapping to detect myocardial inflammation[J]. Rheumatology (Oxford), 2022, 61(11): 4409-4419. DOI: 10.1093/rheumatology/keac098.
[58]
CHEN H, ERLEY J, MUELLERLEILE K, et al. Contrast-enhanced cardiac MRI is superior to non-contrast mapping to predict left ventricular remodeling at 6 months after acute myocardial infarction[J]. Eur Radiol, 2024, 34(3): 1863-1874. DOI: 10.1007/s00330-023-10100-9.
[59]
CHEN B H, WU C W, AN D A, et al. Myocardial extracellular volume quantified by cardiac magnetic resonance predicts left ventricular aneurysm following acute myocardial infarction[J]. Eur Radiol, 2023, 33(1): 283-293. DOI: 10.1007/s00330-022-08995-x.
[60]
SENO A, ANTIOCHOS P, LICHTENFELD H, et al. Prognostic value of T1 mapping and feature tracking by cardiac magnetic resonance in patients with signs and symptoms suspecting heart failure and No clinical evidence of coronary artery disease[J/OL]. J Am Heart Assoc, 2022, 11(2): e020981 [2025-07-28]. https://pubmed.ncbi.nlm.nih.gov/35023344/. DOI: 10.1161/JAHA.121.020981.
[61]
PLASA G, HILLIER E, LUU J, et al. Automated data transformation and feature extraction for oxygenation-sensitive cardiovascular magnetic resonance images[J]. J Cardiovasc Transl Res, 2024, 17(3): 705-715. DOI: 10.1007/s12265-023-10474-7.
[62]
LINDSAY K, HILLIER E, LUU J, et al. Kiosk 11R-TA-08 the breathing-induced myocardial oxygenation reserve as a marker for vascular function in metabolic syndrome[J/OL]. J Cardiovasc Magn Reson, 2024, 26: 100301 [2025-07-28]. https://www.journalofcmr.com/article/S1097-6647(24)00292-8/fulltext. DOI: 10.1016/j.jocmr.2024.100301.
[63]
FISCHER K, GUENSCH D P, JUNG B, et al. Insights into myocardial oxygenation and cardiovascular magnetic resonance tissue biomarkers in heart failure with preserved ejection fraction[J/OL]. Circ Heart Fail, 2022, 15(4): e008903 [2025-07-28]. https://pubmed.ncbi.nlm.nih.gov/35038887/. DOI: 10.1161/circheartfailure.121.008903.
[64]
FISCHER K, YAMAJI K, LUESCHER S, et al. Feasibility of cardiovascular magnetic resonance to detect oxygenation deficits in patients with multi-vessel coronary artery disease triggered by breathing maneuvers[J/OL]. J Cardiovasc Magn Reson, 2018, 20(1): 31 [2025-07-28]. https://pubmed.ncbi.nlm.nih.gov/29730991/. DOI: 10.1186/s12968-018-0446-y.
[65]
SUGIYAMA T, KANAJI Y, HOSHINO M, et al. Prognostic value of integrated assessment of cardiac magnetic resonance-derived global coronary flow reserve and cardiopulmonary exercise testing-derived peak oxygen consumption in patients with acute myocardial infarction[J]. Circ Rep, 2024, 6(7): 255-262. DOI: 10.1253/circrep.CR-24-0044.
[66]
WEBERLING L, SEITZ S, SALATZKI J, et al. Kiosk 1R-TB-03 safety and outcome of patients with left ventricular thrombus undergoing dobutamine or adenosine stress cardiac magnetic resonance imaging[J/OL]. J Cardiovasc Magn Reson, 2024, 26: 100383 [2025-07-28]. https://www.journalofcmr.com/article/S1097-6647(24)00374-0/fulltext. DOI: 10.1016/j.jocmr.2024.100383.
[67]
HILLIER E, FRIEDRICH M G. The potential of oxygenation-sensitive CMR in heart failure[J]. Curr Heart Fail Rep, 2021, 18(5): 304-314. DOI: 10.1007/s11897-021-00525-y.
[68]
VAN HEESWIJK R B, HULLIN R. Oxygen-sensitive magnetic resonance imaging: a noninvasive step forward for diagnosing vasculopathy in the cardiac allograft[J]. Transplantation, 2021, 105(8): 1664-1665. DOI: 10.1097/tp.0000000000003420.
[69]
PLASA G, HILLIER E, LUU J, et al. Machine learning based analysis of oxygenation-sensitive cmr images in patients with suspected coronary artery stenosis[J/OL]. J Am Coll Cardiol, 2023, 81(8): 1407 [2025-07-28]. https://www.jacc.org/doi/10.1016/S0735-1097%2823%2901851-X. DOI: 10.1016/S0735-1097(23)01851-X.

PREV Applications and research advances of cardiovascular imaging in cardio-oncology
NEXT Advances in the application of CMR based radiomics in cardiac diseases
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn