Share:
Share this content in WeChat
X
Review
Research progress of MRI-based habitat analysis in the clinical diagnosis and treatment of breast cancer
WANG Xiaoshan  ZHANG Yu  ZHAO Jiayi  TANG Kunpeng  LI Feng 

Cite this article as: WANG X S, ZHANG Y, ZHAO J Y, et al. Research progress of MRI-based habitat analysis in the clinical diagnosis and treatment of breast cancer[J]. Chin J Magn Reson Imaging, 2025, 16(10): 177-183. DOI:10.12015/issn.1674-8034.2025.10.028.


[Abstract] Breast cancer is a malignant tumor with the highest incidence and mortality among women in the world. Its significant tumor heterogeneity poses a major challenge to clinical precision targeted therapy and long-term follow-up management. Habitat analysis is a new tumor segmentation technique based on radiomics. It achieves quantitative and visual analysis of intratumoral heterogeneity (ITH) by dividing tumors into several subregions with different functions. Compared with traditional radiomics methods, habitat analysis significantly improves the diagnostic performance of tumor prediction models and reveals the biological nature of tumors. This review systematically summarizes the current clinical research progress of MRI habitat analysis in the field of breast cancer. Firstly, we summarized the theoretical basis of spatial-temporal heterogeneity and habitat analysis of breast cancer. Subsequently, the standardized workflow of this technology and the key technologies such as automatic segmentation based on deep learning were systematically introduced, and the clinical application value of this method in predicting molecular typing, genetic characteristics, lymph node metastasis, neoadjuvant chemotherapy efficacy and prognosis of breast cancer was discussed. Finally, by analyzing the shortcomings of existing research and propose future research directions. This article aims to provide a theoretical basis for the stratified management of breast cancer patients and the formulation of individualized treatment strategies.
[Keywords] habitat analysis;radiomics;breast cancer;magnetic resonance imaging;intratumoral heterogeneity;tumor microenvironment

WANG Xiaoshan1, 2   ZHANG Yu3   ZHAO Jiayi1, 2   TANG Kunpeng4   LI Feng4*  

1 Xiangyang Central Hospital Graduate Joint Training Base of Wuhan University of Science and Technology, Xiangyang 441021, China

2 School of Medicine, Wuhan University of Science and Technology, Wuhan 430081, China

3 Department of General Surgery, Xiangyang Hospital of Integrated Traditional Chinese and Western Medicine, Xiangyang 441021, China

4 Department of Radiology and Imaging, Xiangyang Central Hospital Affiliated to Hubei University of Arts and Sciences, Xiangyang Central Hospital, Xiangyang 441021, China

Corresponding author: LI F, E-mail: xfkite@163.com

Conflicts of interest   None.

Received  2025-06-12
Accepted  2025-09-26
DOI: 10.12015/issn.1674-8034.2025.10.028
Cite this article as: WANG X S, ZHANG Y, ZHAO J Y, et al. Research progress of MRI-based habitat analysis in the clinical diagnosis and treatment of breast cancer[J]. Chin J Magn Reson Imaging, 2025, 16(10): 177-183. DOI:10.12015/issn.1674-8034.2025.10.028.

[1]
SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660.
[2]
BRAY F, LAVERSANNE M, SUNG H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2024, 74(3): 229-263. DOI: 10.3322/caac.21834.
[3]
WEKKING D, PORCU M, DE SILVA P, et al. Breast MRI: clinical indications, recommendations, and future applications in breast cancer diagnosis[J]. Curr Oncol Rep, 2023, 25(4): 257-267. DOI: 10.1007/s11912-023-01372-x.
[4]
WU X Y, XIA Y F, LOU X J, et al. Decoding breast cancer imaging trends: the role of AI and radiomics through bibliometric insights[J/OL]. Breast Cancer Res, 2025, 27(1): 29 [2025-06-11]. https://pubmed.ncbi.nlm.nih.gov/40001088/. DOI: 10.1186/s13058-025-01983-1.
[5]
NAGADI D A, ELSAYED N M. Magnetic resonance imaging of the breast: could it be used as a screening test?[J]. Saudi Med J, 2024, 45(8): 799-807. DOI: 10.15537/smj.2024.45.8.20230748.
[6]
SATAKE H, ISHIGAKI S, ITO R, et al. Radiomics in breast MRI: current progress toward clinical application in the era of artificial intelligence[J]. Radiol Med, 2022, 127(1): 39-56. DOI: 10.1007/s11547-021-01423-y.
[7]
LI X G, TIAN J, ZHANG C L, et al. Overview of MRI-based radiomics in breast cancer diagnosis and treatment[J]. Chin J Magn Reson Imag, 2024, 15(7): 196-203. DOI: 10.12015/issn.1674-8034.2024.07.033.
[8]
ZHANG X L, WANG M Y, YANG Z H, et al. Research progress of artificial intelligence in magnetic resonance diagnosis of breast cancer[J]. Chin J Magn Reson Imag, 2025, 16(3): 184-189. DOI: 10.12015/issn.1674-8034.2025.03.031.
[9]
WANG H W, ZENG L L, WU H, et al. Preoperative vascular heterogeneity based on dynamic susceptibility contrast MRI in predicting spatial pattern of locally recurrent high-grade gliomas[J]. Eur Radiol, 2024, 34(3): 1982-1993. DOI: 10.1007/s00330-023-10149-6.
[10]
SHI Z W, HUANG X M, CHENG Z L, et al. MRI-based quantification of intratumoral heterogeneity for predicting treatment response to neoadjuvant chemotherapy in breast cancer[J/OL]. Radiology, 2023, 308(1): e222830 [2025-06-11]. https://pubmed.ncbi.nlm.nih.gov/37432083/. DOI: 10.1148/radiol.222830.
[11]
XU C, WANG Z H, WANG A L, et al. Breast cancer: multi-b-value diffusion weighted habitat imaging in predicting pathologic complete response to neoadjuvant chemotherapy[J]. Acad Radiol, 2024, 31(12): 4733-4742. DOI: 10.1016/j.acra.2024.06.004.
[12]
SYED A K, WHISENANT J G, BARNES S L, et al. Multiparametric analysis of longitudinal quantitative MRI data to identify distinct tumor habitats in preclinical models of breast cancer[J/OL]. Cancers (Basel), 2020, 12(6): 1682 [2025-06-11]. https://pubmed.ncbi.nlm.nih.gov/32599906/. DOI: 10.3390/cancers12061682.
[13]
ZHANG D W, WANG P, TIAN D J, et al. Research progress of multi-parameter MRI habitat imaging in breast cancer[J]. Radiol Pract, 2025, 40(5): 677-681. DOI: 10.13609/j.cnki.1000-0313.2025.05.026.
[14]
CHEN Z H, ZHOU J X, WANG M J, et al. Research progress in breast cancer based on MRI tumor habitat imaging[J]. Chin J Radiol, 2025, 59(4): 463-467. DOI: 10.3760/cma.j.cn112149-20240512-00269.
[15]
XUE Y F, WANG W W, MA S, et al. Advances in the application of magnetic resonance habitat imaging for the diagnosis and treatment of breast cancer[J]. Chin J Magn Reson Imag, 2025, 16(7): 154-159. DOI: 10.12015/issn.1674-8034.2025.07.025.
[16]
GUO L T, KONG D G, LIU J H, et al. Breast cancer heterogeneity and its implication in personalized precision therapy[J/OL]. Exp Hematol Oncol, 2023, 12(1): 3 [2025-06-11]. https://pubmed.ncbi.nlm.nih.gov/36624542/. DOI: 10.1186/s40164-022-00363-1.
[17]
DAGOGO-JACK I, SHAW A T. Tumour heterogeneity and resistance to cancer therapies[J]. Nat Rev Clin Oncol, 2017, 15(2): 81-94. DOI: 10.1038/nrclinonc.2017.166.
[18]
LIU S S, DU S Y, GAO S, et al. A delta-radiomic lymph node model using dynamic contrast enhanced MRI for the early prediction of axillary response after neoadjuvant chemotherapy in breast cancer patients[J/OL]. BMC Cancer, 2023, 23(1): 15 [2025-06-11]. https://pubmed.ncbi.nlm.nih.gov/36604679/. DOI: 10.1186/s12885-022-10496-5.
[19]
FUMAGALLI C, BARBERIS M. Breast cancer heterogeneity[J/OL]. Diagnostics, 2021, 11(9): 1555 [2025-06-11]. https://pubmed.ncbi.nlm.nih.gov/34573897/. DOI: 10.3390/diagnostics11091555.
[20]
XIE P Y, HUANG Q T, ZHENG L T, et al. Sub-region based histogram analysis of amide proton transfer-weighted MRI for predicting tumor budding grade in rectal adenocarcinoma: a prospective study[J]. Eur Radiol, 2025, 35(3): 1382-1393. DOI: 10.1007/s00330-024-11172-x.
[21]
SWARBRICK A, FERNANDEZ-MARTINEZ A, PEROU C M. Gene-expression profiling to decipher breast cancer inter- and intratumor heterogeneity[J/OL]. Cold Spring Harb Perspect Med, 2024, 14(1): a041320 [2025-06-11]. https://pubmed.ncbi.nlm.nih.gov/37137498/. DOI: 10.1101/cshperspect.a041320.
[22]
ZHAO N, ROSEN J M. Breast cancer heterogeneity through the lens of single-cell analysis and spatial pathologies[J/OL]. Semin Cancer Biol, 2022, 82: 3-10 [2025-06-11]. https://pubmed.ncbi.nlm.nih.gov/34274486/. DOI: 10.1016/j.semcancer.2021.07.010.
[23]
LI S L, DAI Y M, CHEN J Y, et al. MRI-based habitat imaging in cancer treatment: current technology, applications, and challenges[J/OL]. Cancer Imaging, 2024, 24(1): 107 [2025-06-11]. https://pubmed.ncbi.nlm.nih.gov/39148139/. DOI: 10.1186/s40644-024-00758-9.
[24]
WANG C, WU F, WANG F, et al. The association between tumor radiomic analysis and peritumor habitat-derived radiomic analysis on gadoxetate disodium-enhanced MRI with microvascular invasion in hepatocellular carcinoma[J]. J Magn Reson Imaging, 2025, 61(3): 1428-1439. DOI: 10.1002/jmri.29523.
[25]
ZHENG Y. Closed-Loop Habitat Imaging for Studying Tumor Heterogeneity in Radiology. Xi'an: Air Force Medical University of PLA, 2024. DOI: 10.27002/d.cnki.gsjyu.2024.000224.
[26]
ZHANG X L, CHEN X Y, FU Y, et al. Study on heterogeneity of vascularity and cellularity via multiparametric MRI habitat imaging in breast cancer[J/OL]. BMC Med Imaging, 2025, 25(1): 159 [2025-06-11]. https://pubmed.ncbi.nlm.nih.gov/40361010/. DOI: 10.1186/s12880-025-01698-x.
[27]
YIN L L, LIU Y, ZHANG X, et al. The effect of heterogenous subregions in glioblastomas on survival stratification: a radiomics analysis using the multimodality MRI[J/OL]. Technol Cancer Res Treat, 2021, 20: 15330338211033059 [2025-06-11]. https://pubmed.ncbi.nlm.nih.gov/34318731/. DOI: 10.1177/15330338211033059.
[28]
ZHANG B, SONG L R, YIN J D. Texture analysis of DCE-MRI intratumoral subregions to identify benign and malignant breast tumors[J/OL]. Front Oncol, 2021, 11: 688182 [2025-06-11]. https://pubmed.ncbi.nlm.nih.gov/34307153/. DOI: 10.3389/fonc.2021.688182.
[29]
LIU Y H, WANG P, WANG S Y, et al. Heterogeneity matching and IDH prediction in adult-type diffuse gliomas: a DKI-based habitat analysis[J/OL]. Front Oncol, 2023, 13: 1202170 [2025-06-11]. https://pubmed.ncbi.nlm.nih.gov/38090477/. DOI: 10.3389/fonc.2023.1202170.
[30]
JOHN F, BOSNYÁK E, ROBINETTE N L, et al. Multimodal imaging-defined subregions in newly diagnosed glioblastoma: impact on overall survival[J]. Neuro Oncol, 2019, 21(2): 264-273. DOI: 10.1093/neuonc/noy169.
[31]
XU R, YU D, LUO P, et al. Do habitat MRI and fractal analysis help distinguish triple-negative breast cancer from non-triple-negative breast carcinoma[J]. Can Assoc Radiol J, 2024, 75(3): 584-592. DOI: 10.1177/08465371241231573.
[32]
ZHANG X, LU D, GAO P, et al. Survival-relevant high-risk subregion identification for glioblastoma patients: the MRI-based multiple instance learning approach[J]. Eur Radiol, 2020, 30(10): 5602-5610. DOI: 10.1007/s00330-020-06912-8.
[33]
WU L X, DING N, JI Y D, et al. Habitat analysis in tumor imaging: advancing precision medicine through radiomic subregion segmentation[J/OL]. Cancer Manag Res, 2025, 17: 731-741 [2025-06-11]. https://pubmed.ncbi.nlm.nih.gov/40190416/. DOI: 10.2147/CMAR.S511796.
[34]
FOLTYN-DUMITRU M, KESSLER T, SAHM F, et al. Cluster-based prognostication in glioblastoma: unveiling heterogeneity based on diffusion and perfusion similarities[J]. Neuro Oncol, 2024, 26(6): 1099-1108. DOI: 10.1093/neuonc/noad259.
[35]
ISENSEE F, JAEGER P F, KOHL S A A, et al. nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation[J]. Nat Methods, 2021, 18(2): 203-211. DOI: 10.1038/s41592-020-01008-z.
[36]
TANG W J, JIN C, KONG Q C, et al. Development and validation of an MRI spatiotemporal interaction model for early noninvasive prediction of neoadjuvant chemotherapy response in breast cancer: a multicentre study[J/OL]. EClinicalMedicine, 2025, 85: 103298 [2025-06-11]. https://pubmed.ncbi.nlm.nih.gov/40584836/. DOI: 10.1016/j.eclinm.2025.103298.
[37]
CHEN H Q, LIU Y L, ZHAO J Q, et al. Quantification of intratumoral heterogeneity using habitat-based MRI radiomics to identify HER2-positive, -low and-zero breast cancers: a multicenter study[J/OL]. Breast Cancer Res, 2024, 26(1): 160 [2025-06-11]. https://pubmed.ncbi.nlm.nih.gov/39578913/. DOI: 10.1186/s13058-024-01921-7.
[38]
HUANG S Y, FRANC B L, HARNISH R J, et al. Exploration of PET and MRI radiomic features for decoding breast cancer phenotypes and prognosis[J/OL]. NPJ Breast Cancer, 2018, 4: 24 [2025-06-11]. https://pubmed.ncbi.nlm.nih.gov/30131973/. DOI: 10.1038/s41523-018-0078-2.
[39]
CHENG W Q, QI X, YANG H K, et al. Identification of type Luminal and non-type Luminal breast cancers based on multiparametric MR habitat imaging[J]. Chin J Magn Reson Imag, 2025, 16(5): 170-180. DOI: 10.12015/issn.1674-8034.2025.05.026.
[40]
YAN M, ZONG Z Q, GUO W Y, et al. PIK3CA gene mutation status associated with poor prognosis of breast cancer: a retrospective cohort study[J/OL]. BMC Cancer, 2025, 25(1): 365 [2025-06-11]. https://pubmed.ncbi.nlm.nih.gov/40016671/. DOI: 10.1186/s12885-025-13486-5.
[41]
DU T M, ZHAO H D. Habitat analysis of breast cancer-enhanced MRI reflects BRCA1 mutation determined by immunohistochemistry[J/OL]. Biomed Res Int, 2022, 2022: 9623173 [2025-06-11]. https://pubmed.ncbi.nlm.nih.gov/35402620/. DOI: 10.1155/2022/9623173.
[42]
FAN M, XIA P P, LIU B, et al. Tumour heterogeneity revealed by unsupervised decomposition of dynamic contrast-enhanced magnetic resonance imaging is associated with underlying gene expression patterns and poor survival in breast cancer patients[J/OL]. Breast Cancer Res, 2019, 21(1): 112 [2025-06-11]. https://pubmed.ncbi.nlm.nih.gov/31623683/. DOI: 10.1186/s13058-019-1199-8.
[43]
MOTIEI M, MANSOURI S S, TAMIMI A, et al. The diagnostic accuracy of MRI radiomics in axillary lymph node metastasis prediction: a systematic review and meta-analysis[J]. Int J Surg, 2025, 111(9): 6412-6426. DOI: 10.1097/JS9.0000000000002588.
[44]
WANG Y X, SHANG Y Y, GUO Y X, et al. Clinical study on the prediction of ALN metastasis based on intratumoral and peritumoral DCE-MRI radiomics and clinico-radiological characteristics in breast cancer[J/OL]. Front Oncol, 2024, 14: 1357145 [2025-06-11]. https://pubmed.ncbi.nlm.nih.gov/38567148/. DOI: 10.3389/fonc.2024.1357145.
[45]
CHAUDHURY B, ZHOU M, GOLDGOF D B, et al. Heterogeneity in intratumoral regions with rapid gadolinium washout correlates with estrogen receptor status and nodal metastasis[J]. J Magn Reson Imaging, 2015, 42(5): 1421-1430. DOI: 10.1002/jmri.24921.
[46]
WU P Q, GUO F L, WANG J, et al. Development and validation of a dynamic contrast-enhanced magnetic resonance imaging-based habitat and peritumoral radiomic model to predict axillary lymph node metastasis in patients with breast cancer: a retrospective study[J]. Quant Imaging Med Surg, 2024, 14(12): 8211-8226. DOI: 10.21037/qims-24-558.
[47]
TIAN T, LI C, HU C, et al. Visualization of research trend of neoadjuvant chemotherapy for breast cancer treatment: a bibliometric analysis[J/OL]. Discov Oncol, 2025, 16(1): 1154 [2025-06-11]. https://pubmed.ncbi.nlm.nih.gov/40536693/. DOI: 10.1007/s12672-025-02950-0.
[48]
ZHANG H, ZHENG Y Y, ZHANG M Z, et al. Breast Cancer: Habitat imaging based on intravoxel incoherent motion for predicting pathologic complete response to neoadjuvant chemotherapy[J]. Med Phys, 2025, 52(6): 3711-3722. DOI: 10.1002/mp.17813.
[49]
KAZEROUNI A S, HORMUTH D A, DAVIS T, et al. Quantifying tumor heterogeneity via MRI habitats to characterize microenvironmental alterations in HER2+ breast cancer[J/OL]. Cancers, 2022, 14(7): 1837 [2025-06-11]. https://pubmed.ncbi.nlm.nih.gov/35406609/. DOI: 10.3390/cancers14071837.
[50]
WU J, CAO G H, SUN X L, et al. Intratumoral spatial heterogeneity at perfusion MR imaging predicts recurrence-free survival in locally advanced breast cancer treated with neoadjuvant chemotherapy[J]. Radiology, 2018, 288(1): 26-35. DOI: 10.1148/radiol.2018172462.
[51]
WU J, CUI Y, SUN X L, et al. Unsupervised clustering of quantitative image phenotypes reveals breast cancer subtypes with distinct prognoses and molecular pathways[J]. Clin Cancer Res, 2017, 23(13): 3334-3342. DOI: 10.1158/1078-0432.CCR-16-2415.
[52]
NEAGU A N, WHITHAM D, BRUNO P, et al. Omics-based investigations of breast cancer[J/OL]. Molecules, 2023, 28(12): 4768 [2025-06-11]. https://pubmed.ncbi.nlm.nih.gov/37375323/. DOI: 10.3390/molecules28124768.

PREV Advances in mpMRI and radiomics for differentiating granulomatous mastitis from non-mass-like breast cancer
NEXT Research progress in imaging evaluation of liver reserve function
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn