Share:
Share this content in WeChat
X
Review
Research progress in imaging evaluation of liver reserve function
ZHANG Yiming  GUO Shunlin 

Cite this article as: ZHANG Y M, GUO S L. Research progress in imaging evaluation of liver reserve function[J]. Chin J Magn Reson Imaging, 2025, 16(10): 184-190, 207. DOI:10.12015/issn.1674-8034.2025.10.029.


[Abstract] Liver reserve function refers to the capacity of the liver to maintain its physiological functions under stress or injury, the accurate assessment of which is critical for developing individualized treatment strategies, reducing postoperative complications, and improving patient survival. Conventional clinical evaluation methods, such as the Child-Pugh score, are limited by their singularity and subjectivity, failing to comprehensively reflect the actual functional reserve of the liver. In recent years, medical imaging technologies have demonstrated significant advancements in the evaluation of liver reserve function, with various modalities offering distinct advantages and limitations. For instance, ultrasound imaging allows real-time dynamic observation but suffers from limited spatial resolution. Computed tomography (CT) provides detailed anatomical information but involves considerable radiation exposure. Magnetic resonance imaging (MRI), with its superior soft-tissue contrast and diverse functional sequences, particularly multimodal MRI, has markedly improved assessment accuracy by offering detailed insights into liver microcirculation and fibrosis, albeit at a higher cost. Although several reviews have summarized imaging-based liver function assessment, most focus on earlier technological developments and lack a systematic discussion and cross-modality comparison of emerging multimodal imaging techniques, such as fusion imaging and artificial intelligence (AI)-assisted analysis, in the context of liver reserve function. Coverage remains relatively narrow in scope. Therefore, this review aims to systematically evaluate and compare the strengths and limitations of ultrasound, CT, MRI, and AI-based methodologies, with emphasis on advances over the past three years. We will highlight innovative applications of multimodal MRI and AI technologies in assessing liver reserve function, intending to provide more precise and integrated imaging-based evidence for clinical practice.
[Keywords] liver reserve function;imaging techniques;magnetic resonance imaging;computed tomography;ultrasound;artificial intelligence

ZHANG Yiming1   GUO Shunlin1, 2*  

1 The First Clinical Medical College of Lanzhou University, Lanzhou 730030, China

2 Department of Radiology, the First Hospital of Lanzhou University, Lanzhou 730030, China

Corresponding author: GUO S L, E-mail: guoshl@lzu.edu.cn

Conflicts of interest   None.

Received  2025-07-14
Accepted  2025-10-10
DOI: 10.12015/issn.1674-8034.2025.10.029
Cite this article as: ZHANG Y M, GUO S L. Research progress in imaging evaluation of liver reserve function[J]. Chin J Magn Reson Imaging, 2025, 16(10): 184-190, 207. DOI:10.12015/issn.1674-8034.2025.10.029.

[1]
SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660.
[2]
PRABOWO E, SUSILANINGSIH N, SUHARTI C, et al. Predictors for 30-day mortality in hepatocellular carcinoma patients undergoing liver resection[J/OL]. Narra J, 2024, 4(3): e1001 [2025-09-13] https://pubmed.ncbi.nlm.nih.gov/39816077/. DOI: 10.52225/narra.v4i3.1001.
[3]
WU P C, GUO L Z, YU S, et al. Noninvasive assessment of liver function reserve with fluorescent dosimetry of indocyanine green[J]. Biomed Opt Express, 2022, 13(4): 1995-2005. DOI: 10.1364/BOE.446749.
[4]
NISHIO T, TAURA K, KOYAMA Y, et al. Current status of preoperative risk assessment for posthepatectomy liver failure in patients with hepatocellular carcinoma[J]. Ann Gastroenterol Surg, 2023, 7(6): 871-886. DOI: 10.1002/ags3.12692.
[5]
BOUBADDI M, MARICHEZ A, ADAM J P, et al. Comprehensive review of future liver remnant (FLR) assessment and hypertrophy techniques before major hepatectomy: how to assess and manage the FLR[J]. Ann Surg Oncol, 2024, 31(13): 9205-9220. DOI: 10.1245/s10434-024-16108-9.
[6]
YU Q J, LUO Y C, ZUO Z W, et al. Utility of gadoxetate disodium-enhanced magnetic resonance imaging in evaluating liver failure risk after major hepatic resection[J]. Quant Imaging Med Surg, 2024, 14(5): 3731-3743. DOI: 10.21037/qims-23-1504.
[7]
NAGAYAMA Y, HOKAMURA M, TAGUCHI N, et al. Liver function estimation using multiphase hepatic CT: diagnostic performance of iodine-uptake and volumetric parameters[J]. Eur Radiol, 2025, 35(9): 5781-5791. DOI: 10.1007/s00330-025-11497-1.
[8]
ALRAISH R, WICHA S G, FREY O R, et al. Liver function, quantified by the LiMAx test, as a predictor for the clinical outcome of critically ill patients treated with linezolid[J]. Technol Health Care, 2022, 30(2): 309-321. DOI: 10.3233/THC-191847.
[9]
MAJEED N F, BRASCHI AMIRFARZAN M, WALD C, et al. Spectral detector CT applications in advanced liver imaging[J/OL]. Br J Radiol, 2021, 94(1123): 20201290 [2025-09-13]. https://pubmed.ncbi.nlm.nih.gov/34048285/. DOI: 10.1259/bjr.20201290.
[10]
MORITA K, NISHIE A, USHIJIMA Y, et al. Noninvasive assessment of liver fibrosis by dual-layer spectral detector CT[J/OL]. Eur J Radiol, 2021, 136: 109575 [2025-09-13]. https://pubmed.ncbi.nlm.nih.gov/33548853/. DOI: 10.1016/j.ejrad.2021.109575.
[11]
RONOT M, LEPORQ B, VAN BEERS B E, et al. CT and MR perfusion techniques to assess diffuse liver disease[J]. Abdom Radiol (NY), 2020, 45(11): 3496-3506. DOI: 10.1007/s00261-019-02338-z.
[12]
MA Z B, XIE Y Z. Evaluation of liver reserve function using whole-liver volume computed tomography perfusion imaging in patients with hepatitis B and liver cirrhosis[J]. Chin J Anat Clin, 2016, 21(2): 115-119. DOI: 10.3760/cma.j.issn.2095-7041.2016.02.005.
[13]
LIAO J Y, LI N Q, SU W. CT perfusion parameters evaluate the liver reserve function of hepatic fibrosis-an experimental research[J]. Chin J Exp Surg, 2016, 33(10): 2320-2323. DOI: 10.3760/cma.j.issn.1001-9030.2016.10.021.
[14]
ZIERKE M A, RANGGER C, SAMADIKHAH K, et al. 68Ga-labeled glycopeptides as effective tools for liver function imaging[J]. Mol Pharm, 2025, 22(3): 1677-1685. DOI: 10.1021/acs.molpharmaceut.4c01453.
[15]
WERNER A, FREESMEYER M, KÜHNEL C, et al. Liver PET reloaded: automated synthesis of [68Ga] Ga-BP-IDA for positron imaging of the hepatobiliary function and first clinical experience[J/OL]. Diagnostics (Basel), 2023, 13(6): 1144 [2025-07-11]. https://pubmed.ncbi.nlm.nih.gov/36980451/. DOI: 10.3390/diagnostics13061144.
[16]
MII S, TAKAHARA T, SHIBASAKI S, et al. 99mTc-GSA scintigraphy and modified albumin-bilirubin score can be complementary to ICG for predicting posthepatectomy liver failure[J/OL]. BMC Surg, 2024, 24(1): 342 [2025-07-11]. https://pubmed.ncbi.nlm.nih.gov/39482649/. DOI: 10.1186/s12893-024-02624-8.
[17]
BAKOS A, LIBOR L, URBÁN S, et al. Dynamic [99mTc] Tc-mebrofenin SPECT/CT in preoperative planning of liver resection: A prospective study[J/OL]. Sci Rep, 2024, 14(1): 30305 [2025-07-11]. https://pubmed.ncbi.nlm.nih.gov/39638819/. DOI: 10.1038/s41598-024-81331-z.
[18]
REINDERS M T M, SMITS M J L, VAN ERPECUM K, et al. Hepatobiliary scintigraphy and liver function changes in patients with hepatocellular carcinoma treated with 166Ho-radioembolization: HBS in HCC treated with holmium-166[J/OL]. EJNMMI Res, 2025, 15(1): 2 [2025-07-11]. https://pubmed.ncbi.nlm.nih.gov/39786516/. DOI: 10.1186/s13550-025-01196-9.
[19]
OLTHOF P B, ARNTZ P, TRUANT S, et al. Hepatobiliary scintigraphy to predict postoperative liver failure after major liver resection; a multicenter cohort study in 547 patients[J]. HPB (Oxford), 2023, 25(4): 417-424. DOI: 10.1016/j.hpb.2022.12.005.
[20]
CHANG E, WONG F C L, CHASEN B A, et al. Phase I trial of single-photon emission computed tomography-guided liver-directed radiotherapy for patients with low functional liver volume[J/OL]. JNCI Cancer Spectr, 2024, 8(3): pkae037 [2025-07-11]. https://pubmed.ncbi.nlm.nih.gov/38730548/. DOI: 10.1093/jncics/pkae037.
[21]
SMET H, MARTIN D, ULDRY E, et al. Tc-99m mebrofenin hepatobiliary scintigraphy to assess future liver remnant function before major liver surgery[J]. J Surg Oncol, 2023, 128(8): 1312-1319. DOI: 10.1002/jso.27426.
[22]
NESSIPKHAN A, KUDO T. Discordance between clinical parameters and 99mTc-GSA scintigraphy in predicting liver dysfunction: a case report[J/OL]. Radiology Case, 2024, 18(7) [2025-07-11]. https://www.radiologycases.com/index.php/radiologycases/article/view/5403. DOI: 10.3941/jrcr.5403.
[23]
YAO S Y, TAURA K, YOH T, et al. Nonsuperiority of technetium-99m-galactosyl human serum albumin scintigraphy over conventional volumetry for assessing the future liver remnant in patients undergoing hepatectomy after portal vein embolization[J]. Surgery, 2023, 173(2): 435-441. DOI: 10.1016/j.surg.2022.10.005.
[24]
ARNTZ P J W, DEROOSE C M, MARCUS C, et al. Joint EANM/SNMMI/IHPBA procedure guideline for [99mTc] Tc-mebrofenin hepatobiliary scintigraphy SPECT/CT in the quantitative assessment of the future liver remnant function[J]. HPB (Oxford), 2023, 25(10): 1131-1144. DOI: 10.1016/j.hpb.2023.06.001.
[25]
XUE L Y, FU T T, DING H, et al. Predictive value of two-dimentional shear wave elastography in posthepatoectomy liver failure[J]. Natl Med J China, 2020, 100(39): 3075-3080. DOI: 10.3760/cma.j.cn112137-20200228-00506.
[26]
CHEN F Y, HAO J P. Application of two-dimensional real-time shear wave elastography in chronic hepatitis[J]. Adv Clin Med, 2023, 13(1): 226-231. DOI: 10.12677/ACM.2023.131035.
[27]
HU B J, HUANG Z P, HUANG L Y. Application of two-dimensional shear wave elastography in evaluating liver reserve function in patients with liver cancer[J]. J Clin Ultrasound, 2025, 53(7): 1565-1573. DOI: 10.1002/jcu.24015.
[28]
XIE L T, YAN C H, ZHAO Q Y, et al. Quantitative and noninvasive assessment of chronic liver diseases using two-dimensional shear wave elastography[J]. World J Gastroenterol, 2018, 24(9): 957-970. DOI: 10.3748/wjg.v24.i9.957.
[29]
LONG H Y, XU W X, ZHONG X, et al. Feasibility of liver stiffness measured using two-dimensional shear wave elastography in assessing preoperative liver function for patients with hepatocellular carcinoma[J]. Abdom Radiol (NY), 2022, 47(2): 664-671. DOI: 10.1007/s00261-021-03374-4.
[30]
XU S, ZHANG T, HE B B, et al. Application of ultrasound elastography and splenic size in predicting post-hepatectomy liver failure: Unveiling new clinical perspectives[J/OL]. World J Gastroenterol, 2025, 31(4): 98886 [2025-07-11]. https://pubmed.ncbi.nlm.nih.gov/39877707/. DOI: 10.3748/wjg.v31.i4.98886.
[31]
CHENG G W, FANG Y, XUE L Y, et al. Nomogram based on liver stiffness and spleen area with ultrasound for posthepatectomy liver failure: a multicenter study[J]. World J Gastroenterol, 2024, 30(27): 3314-3325. DOI: 10.3748/wjg.v30.i27.3314.
[32]
LONG H Y, PENG C, DING H, et al. Predicting symptomatic post-hepatectomy liver failure in patients with hepatocellular carcinoma: development and validation of a preoperative nomogram[J]. Eur Radiol, 2023, 33(11): 7665-7674. DOI: 10.1007/s00330-023-09803-w.
[33]
KONG W N, WANG M Y, NIU N N, et al. Role of Doppler trasonography in predicting recovery from early allograft dysfunction in liver postoperative patients[J]. Transplant Proc, 2024, 56(7): 1578-1584. DOI: 10.1016/j.transproceed.2024.08.008.
[34]
MA Y Q, XU X R, LI J, et al. Prediction of posthepatectomy liver failure in patients with hepatocellular carcinoma through ultrasound elastography[J/OL]. World J Gastroenterol, 2025, 31(4): 99373 [2025-07-11]. https://pubmed.ncbi.nlm.nih.gov/39877704/. DOI: 10.3748/wjg.v31.i4.99373.
[35]
VAN BEERS B E, PASTOR C M, HUSSAIN H K. Primovist, eovist: what to expect [J]. J Hepatol, 2012, 57(2): 421-429. DOI: 10.1016/j.jhep.2012.01.031.
[36]
KUDO M, GOTOHDA N, SUGIMOTO M, et al. Liver functional assessment using time-associated change in the liver-to-spleen signal intensity ratio on enhanced magnetic resonance imaging: a retrospective study[J/OL]. BMC Surg, 2023, 23(1): 179 [2025-07-11]. https://pubmed.ncbi.nlm.nih.gov/37370103/. DOI: 10.1186/s12893-023-02051-1.
[37]
WANG C, YUAN X D, WU N, et al. Optimization of hepatobiliary phase imaging in gadoxetic acid-enhanced magnetic resonance imaging: a narrative review[J]. Quant Imaging Med Surg, 2023, 13(3): 1972-1982. DOI: 10.21037/qims-22-916.
[38]
LI J, LI Y, CHEN Y Y, et al. Predicting post-hepatectomy liver failure with T1 mapping-based whole-liver histogram analysis on gadoxetic acid-enhanced MRI: comparison with the indocyanine green clearance test and albumin-bilirubin scoring system[J]. Eur Radiol, 2025, 35(6): 3587-3598. DOI: 10.1007/s00330-024-11238-w.
[39]
LI X, AI G Y, CHEN W J, et al. Evaluation of liver function using hepatocyte uptake and T1 mapping indices in gadoxetic acid-enhanced magnetic resonance imaging: correlation with the albumin-bilirubin grading system[J]. Quant Imaging Med Surg, 2025, 15(4): 3360-3371. DOI: 10.21037/qims-24-1827.
[40]
OBMANN V C, CATUCCI D, BERZIGOTTI A, et al. T1 reduction rate with Gd-EOB-DTPA determines liver function on both 1.5 T and 3 T MRI[J/OL]. Sci Rep, 2022, 12: 4716 [2025-07-11]. https://pubmed.ncbi.nlm.nih.gov/35304554/. DOI: 10.1038/s41598-022-08659-2.
[41]
PHONLAKRAI M, RAMADAN S, SIMPSON J, et al. Determination of hepatic extraction fraction with gadoxetate low-temporal resolution DCE-MRI-based deconvolution analysis: validation with ALBI score and Child-Pugh class[J]. J Med Radiat Sci, 2023, 70(Suppl 2): 48-58. DOI: 10.1002/jmrs.617.
[42]
FONSECA D, NAKAMURA Y, HIGAKI T, et al. Intracellular enhancement technique for gadoxetic acid-enhanced hepatobiliary-phase magnetic resonance imaging: evaluation of hepatic function[J]. Abdom Radiol, 2025, 50(8): 3506-3515. DOI: 10.1007/s00261-025-04817-y.
[43]
ASLAN S, ERYURUK U, TASDEMIR M N, et al. Determining the efficacy of functional liver imaging score (FLIS) obtained from gadoxetic acid-enhanced MRI in patients with chronic liver disease and liver cirrhosis: the relationship between Albumin-Bilirubin (ALBI) grade and FLIS[J]. Abdom Radiol (NY), 2022, 47(7): 2325-2334. DOI: 10.1007/s00261-022-03557-7.
[44]
TANG G X, LIU J B, LIU P, et al. Evaluation of liver function in patients with liver cirrhosis and chronic liver disease using functional liver imaging scores at different acquisition time points[J/OL]. Front Genet, 2022, 13: 1071025 [2025-07-11]. https://pubmed.ncbi.nlm.nih.gov/36561314/. DOI: 10.3389/fgene.2022.1071025.
[45]
ERYURUK U, TASDEMIR M N, KARASU H I, et al. Comparison of the efficacy of the gadoxetic acid MRI-derived relative enhancement index (REI) and functional liver imaging score (FLIS) in predicting liver function: validation with Albumin-Bilirubin (ALBI) grade[J]. Abdom Radiol (NY), 2024, 49(5): 1456-1466. DOI: 10.1007/s00261-024-04324-6.
[46]
EIRAS-ARAÚJO A L, PARENTE D B, SILVA A C DA, et al. Relative enhancement index can be used to quantify liver function in cirrhotic patients that undergo gadoxetic acid-enhanced MRI[J]. Eur Radiol, 2023, 33(7): 5142-5149. DOI: 10.1007/s00330-023-09402-9.
[47]
VERLOH N, BARTULOS C R, UTPATEL K, et al. Volume-assisted estimation of remnant liver function based on Gd-EOB-DTPA enhanced MR relaxometry: A prospective observational trial[J/OL]. Diagnostics (Basel), 2023, 13(18): 3014 [2025-07-11]. https://pubmed.ncbi.nlm.nih.gov/37761381/. DOI: 10.3390/diagnostics13183014.
[48]
WANG Q, BRISMAR T B, GILG S, et al. Multimodal perioperative assessment of liver function and volume in patients undergoing hepatectomy for colorectal liver metastasis: A comparison of the indocyanine green retention test, 99mTc mebrofenin hepatobiliary scintigraphy and gadoxetic acid enhanced MRI[J/OL]. Br J Radiol, 2022, 95(1139): 20220370 [2025-07-11]. https://pubmed.ncbi.nlm.nih.gov/36113499/. DOI: 10.1259/bjr.20220370.
[49]
SIMETH J, ARYAL M, OWEN D, et al. Gadoxetic acid uptake rate as a measure of global and regional liver function as compared with indocyanine green retention, albumin-bilirubin score, and portal venous perfusion[J/OL]. Adv Radiat Oncol, 2022, 7(5): 100942 [2025-07-11]. https://pubmed.ncbi.nlm.nih.gov/35496263/. DOI: 10.1016/j.adro.2022.100942.
[50]
YOSHIZAWA E, YAMADA A, OKAJIMA Y, et al. Harmonization of quantitative liver function evaluation using gadoxetate disodium-enhanced magnetic resonance imaging[J/OL]. Eur Radiol, 2025 [2025-07-11]. https://pubmed.ncbi.nlm.nih.gov/40246737/. DOI: 10.1007/s00330-025-11582-5.
[51]
WANG Q, KESEN S, LILJEROTH M, et al. Quantitative evaluation of liver function with gadoxetic acid enhanced MRI: Comparison among signal intensity-, T1-relaxometry-, and dynamic-hepatocyte-specific-contrast-enhanced MRI- derived parameters[J]. Scand J Gastroenterol, 2022, 57(6): 705-712. DOI: 10.1080/00365521.2022.2032321.
[52]
XU P, LYU L L, LU X, et al. Evaluating the short-term clinical efficacy of magnetic resonance elastography in patients with budd-chiari syndrome[J]. Acad Radiol, 2021, 28(Suppl 1): S179-S183. DOI: 10.1016/j.acra.2021.02.016.
[53]
LIN H M, WANG Y H, ZHOU J H, et al. Tomoelastography based on multifrequency MR elastography predicts liver function reserve in patients with hepatocellular carcinoma: a prospective study[J/OL]. Insights Imaging, 2022, 13(1): 95 [2025-07-11]. https://pubmed.ncbi.nlm.nih.gov/35657534/. DOI: 10.1186/s13244-022-01232-5.
[54]
LIANG J X, AMPUERO J, CASTELL J, et al. Clinical application of Magnetic resonance elastography in hepatocellular carcinoma: From diagnosis to prognosis[J/OL]. Ann Hepatol, 2023, 28(2): 100889 [2025-07-11]. https://pubmed.ncbi.nlm.nih.gov/36572210/. DOI: 10.1016/j.aohep.2022.100889.
[55]
THOMAIDES-BREARS H B, LEPE R, BANERJEE R, et al. Multiparametric MR mapping in clinical decision-making for diffuse liver disease[J]. Abdom Radiol (NY), 2020, 45(11): 3507-3522. DOI: 10.1007/s00261-020-02684-3.
[56]
LI C X, LIU H T, WANG J H, et al. Multiparametric MRI combined with liver volume for quantitative evaluation of liver function in patients with cirrhosis[J]. Diagn Interv Radiol, 2022, 28(6): 547-554. DOI: 10.5152/dir.2022.211325.
[57]
MANHARD M K, RAMANIHARAN A K, TKACH J A, et al. Simultaneous multiparameter mapping of the liver in a single breath-hold or respiratory-triggered acquisition using multi-inversion spin and gradient echo MRI[J]. J Magn Reson Imaging, 2025, 61(4): 1925-1936. DOI: 10.1002/jmri.29584.
[58]
JAUBERT O, ARRIETA C, CRUZ G, et al. Multi-parametric liver tissue characterization using MR fingerprinting: Simultaneous T1, T2, T2 *, and fat fraction mapping[J]. Magn Reson Med, 2020, 84(5): 2625-2635. DOI: 10.1002/mrm.28311.
[59]
FUJITA S, SANO K, CRUZ G, et al. MR fingerprinting for liver tissue characterization: a histopathologic correlation study[J]. Radiology, 2023, 306(1): 150-159. DOI: 10.1148/radiol.220736.
[60]
QIU T T, YANG J G, PAN T, et al. Assessment of liver function reserve by photoacoustic tomography: a feasibility study[J]. Biomed Opt Express, 2020, 11(7): 3985-3995. DOI: 10.1364/BOE.394344.
[61]
ZHANG H, ZENG S L, WU Y Z, et al. Handheld photoacoustic imaging of indocyanine green clearance for real-time quantitative evaluation of liver reserve function[J]. Biomed Opt Express, 2023, 14(7): 3610-3621. DOI: 10.1364/BOE.493538.
[62]
QIU T T, PENG C H, HUANG L, et al. ICG clearance test based on photoacoustic imaging for assessment of human liver function reserve: An initial clinical study[J/OL]. Photoacoustics, 2023, 31: 100511 [2025-07-11]. https://pubmed.ncbi.nlm.nih.gov/37252651/. DOI: 10.1016/j.pacs.2023.100511.
[63]
QIU T T, YANG J G, PENG C H, et al. Diagnosis of liver fibrosis and liver function reserve through non-invasive multispectral photoacoustic imaging[J/OL]. Photoacoustics, 2023, 33: 100562 [2025-07-11]. https://pubmed.ncbi.nlm.nih.gov/38021289/. DOI: 10.1016/j.pacs.2023.100562.
[64]
HUANG S, BLUTKE A, FEUCHTINGER A, et al. Functional multispectral optoacoustic tomography imaging of hepatic steatosis development in mice[J/OL]. EMBO Mol Med, 2021, 13(9): e13490 [2025-07-11]. https://pubmed.ncbi.nlm.nih.gov/34411447/. DOI: 10.15252/emmm.202013490.
[65]
SUN T, LV J, ZHAO X Y, et al. In vivo liver function reserve assessments in alcoholic liver disease by scalable photoacoustic imaging[J/OL]. Photoacoustics, 2023, 34: 100569 [2025-07-11]. https://pubmed.ncbi.nlm.nih.gov/38046637/. DOI: 10.1016/j.pacs.2023.100569.
[66]
SONG X J, WANG S Y, JIA S Y, et al. In vivo evaluation of liver function by multimodal imaging in an alcohol-induced liver injury model[J]. Quant Imaging Med Surg, 2023, 13(10): 6434-6445. DOI: 10.21037/qims-23-122.
[67]
VAN DEN BERG P J, BANSAL R, DAOUDI K, et al. Preclinical detection of liver fibrosis using dual-modality photoacoustic/ultrasound system[J]. Biomed Opt Express, 2016, 7(12): 5081-5091. DOI: 10.1364/BOE.7.005081.
[68]
MIYATA A, ISHIZAWA T, KAMIYA M, et al. Photoacoustic tomography of human hepatic malignancies using intraoperative indocyanine green fluorescence imaging[J/OL]. PLoS One, 2014, 9(11): e112667 [2025-07-11]. https://pubmed.ncbi.nlm.nih.gov/25379674/. DOI: 10.1371/journal.pone.0112667.
[69]
HUANG W J, YANG W, ZHANG Z Y, et al. Liver function classification based on local direction number and non-local binary pattern[J]. Multimed Tools Appl, 2022, 81(22): 32305-32322. DOI: 10.1007/s11042-022-12986-x.
[70]
RÍO BÁRTULOS C, SENK K, BADE R, et al. Using AI and Gd-EOB-DTPA-enhanced MR imaging to assess liver function, comparing the MELIF score with the ALBI score[J/OL]. Sci Rep, 2023, 13: 13121 [2025-07-11]. https://pubmed.ncbi.nlm.nih.gov/37573451/. DOI: 10.1038/s41598-023-39954-1.
[71]
ZHU L, WANG F F, CHEN X, et al. Machine learning-based radiomics analysis of preoperative functional liver reserve with MRI and CT image[J/OL]. BMC Med Imaging, 2023, 23(1): 94 [2025-07-11]. https://pubmed.ncbi.nlm.nih.gov/37460944/. DOI: 10.1186/s12880-023-01050-1.
[72]
HUANG Z W, ZHANG G, LIU J, et al. LRFNet: a deep learning model for the assessment of liver reserve function based on Child‐Pugh score and CT image[J/OL]. Comput Meth Programs Biomed, 2022, 223: 106993 [2025-07-11]. https://pubmed.ncbi.nlm.nih.gov/35793571/. DOI: 10.1016/j.cmpb.2022.106993.

PREV Research progress of MRI-based habitat analysis in the clinical diagnosis and treatment of breast cancer
NEXT Recent advances in MRI-based deep learning prediction of microvascular invasion in hepatocellular carcinoma
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn