Share:
Share this content in WeChat
X
Review
Recent advances in MRI-based deep learning prediction of microvascular invasion in hepatocellular carcinoma
ZHAO Renqing  WU Qixin 

Cite this article as: ZHAO R Q, WU Q X. Recent advances in MRI-based deep learning prediction of microvascular invasion in hepatocellular carcinoma[J]. Chin J Magn Reson Imaging, 2025, 16(10): 191-195. DOI:10.12015/issn.1674-8034.2025.10.030.


[Abstract] Microvascular invasion (MVI) of hepatocellular carcinoma (HCC) is a critical indicator for assessing tumor aggressiveness, postoperative recurrence risk, and prognostic stratification. Although postoperative pathology remains the gold standard for MVI diagnosis, its invasiveness and delayed results limit its utility in preoperative decision-making. In recent years, deep learning (DL) has demonstrated increasing potential for preoperative MVI prediction due to its capacity for automated feature learning. This review systematically summarizes recent advances in DL-based MVI prediction using MRI, outlining the methodological evolution and current limitations, with the aim of providing a reference for building generalizable intelligent prediction tools. Specifically, we highlight progress in several key areas, including the use of non-contrast MRI sequences and multi-sequence fusion, optimization of 2D and 3D convolutional architectures, multi-task learning frameworks, and integration of clinical and imaging features. Moreover, we identify four major challenges faced by current DL models in this domain: (1) limited generalizability due to lack of external validation; (2) missing imaging modalities affecting model adaptability; (3) insufficient interpretability restricting clinical applicability; (4) high computational and data requirements hindering deployment. To address these issues, we further discuss emerging trends such as lightweight network design, multi-center data collaboration, modality completion strategies, causal inference, and structured modeling, aiming to provide guidance for the development of efficient, robust, and clinically translatable predictive tools.
[Keywords] hepatocellular carcinoma;microvascular invasion;radiomics;deep learning;magnetic resonance imaging

ZHAO Renqing1   WU Qixin2*  

1 Department of Radiology, Affiliated Hospital of Youjiang University of Ethnic Medicine, Baise 533000, China

2 Department of Radiology, Chongzuo People's Hospital, Chongzuo 522000, China

Corresponding author: WU Q X, E-mail: 820830957@qq.com

Conflicts of interest   None.

Received  2025-03-04
Accepted  2025-07-07
DOI: 10.12015/issn.1674-8034.2025.10.030
Cite this article as: ZHAO R Q, WU Q X. Recent advances in MRI-based deep learning prediction of microvascular invasion in hepatocellular carcinoma[J]. Chin J Magn Reson Imaging, 2025, 16(10): 191-195. DOI:10.12015/issn.1674-8034.2025.10.030.

[1]
WU M C, TANG Z Y, LIU T H, et al. Evidence-based practice guidelines for the standardized pathological diagnosis of primary liver cancer in China(2015 update)[J]. J Clin Hepatol, 2015, 31(6): 833-839. DOI: 10.3969/j.issn.1001-5256.2015.06.004.
[2]
HAN J, LI Z L, XING H, et al. The impact of resection margin and microvascular invasion on long-term prognosis after curative resection of hepatocellular carcinoma: a multi-institutional study[J]. HPB (Oxford), 2019, 21(8): 962-971. DOI: 10.1016/j.hpb.2018.11.005.
[3]
HWANG Y J, BAE J S, LEE Y, et al. Classification of microvascular invasion of hepatocellular carcinoma: correlation with prognosis and magnetic resonance imaging[J]. Clin Mol Hepatol, 2023, 29(3): 733-746. DOI: 10.3350/cmh.2023.0034.
[4]
FUSTER-ANGLADA C, MAURO E, FERRER-FÀBREGA J, et al. Histological predictors of aggressive recurrence of hepatocellular carcinoma after liver resection[J]. J Hepatol, 2024, 81(6): 995-1004. DOI: 10.1016/j.jhep.2024.06.018.
[5]
LI S H, MEI J, CHENG Y, et al. Postoperative adjuvant hepatic arterial infusion chemotherapy with FOLFOX in hepatocellular carcinoma with microvascular invasion: A multicenter, phase III, randomized study[J]. J Clin Oncol, 2023, 41(10): 1898-1908. DOI: 10.1200/JCO.22.01142.
[6]
CHA D I, KANG T W, JEONG W K, et al. Preoperative assessment of microvascular invasion risk using gadoxetate-enhanced MRI for predicting outcomes after liver transplantation for single hepatocellular carcinoma within the Milan criteria[J]. Eur Radiol, 2024, 34(1): 498-508. DOI: 10.1007/s00330-023-09936-y.
[7]
YANG S Y, NI H S, ZHANG A X, et al. Grading severity of MVI impacts long-term outcomes after laparoscopic liver resection for early-stage hepatocellular carcinoma: a multicenter study[J/OL]. Am J Surg, 2024, 238: 115988 [2025-03-25]. https://doi.org/10.1016/j.amjsurg.2024.115988. DOI: 10.1016/j.amjsurg.2024.115988.
[8]
KIM N R, BAE H, HWANG H S, et al. Preoperative prediction of microvascular invasion with gadoxetic acid-enhanced magnetic resonance imaging in patients with single hepatocellular carcinoma: the implication of surgical decision on the extent of liver resection[J]. Liver Cancer, 2023, 13(2): 181-192. DOI: 10.1159/000531786.
[9]
YANG S Y, NI H S, ZHANG A X, et al. Significance of anatomical resection and wide surgical margin for HCC patients with MVI undergoing laparoscopic hepatectomy: a multicenter study[J/OL]. Eur J Surg Oncol, 2025, 51(1): 109353 [2025-03-25]. https://doi.org/10.1016/j.ejso.2024.109353. DOI: 10.1016/j.ejso.2024.109353.
[10]
LIN W D, YE L N, SONG Z S, et al. Wide surgical margins improve prognosis for HCC with microvascular invasion[J]. Eur Rev Med Pharmacol Sci, 2023, 27(5): 2052-2059. DOI: 10.26355/eurrev_202303_31576.
[11]
Chinese Association of Liver Cancer of Chinese Medical Doctor Association, SHEN F, CHENG S Q, et al. Chinese expert consensus on the diagnosis and treatment of hepatocellular carcinoma with microvascular invasion(2024 edition)[J]. Chin J Dig Surg, 2024, 23(2): 153-164. DOI: 10.3760/cma.j.cn115610-20240125-00041.
[12]
HU H T, ZHENG Q, HUANG Y, et al. A non-smooth tumor margin on preoperative imaging assesses microvascular invasion of hepatocellular carcinoma: A systematic review and meta-analysis[J/OL]. Sci Rep, 2017, 7(1): 15375 [2025-03-19]. https://doi.org/10.1038/s41598-017-15491-6. DOI: 10.1038/s41598-017-15491-6.
[13]
RENZULLI M, BROCCHI S, CUCCHETTI A, et al. Can current preoperative imaging be used to detect microvascular invasion of hepatocellular carcinoma [J]. Radiology, 2016, 279(2): 432-442. DOI: 10.1148/radiol.2015150998.
[14]
CHONG H H, YANG L, SHENG R F, et al. Multi-scale and multi-parametric radiomics of gadoxetate disodium-enhanced MRI predicts microvascular invasion and outcome in patients with solitary hepatocellular carcinoma≤5 cm[J]. Eur Radiol, 2021, 31(7): 4824-4838. DOI: 10.1007/s00330-020-07601-2.
[15]
ZHENG R C, WANG Q D, LV S Z, et al. Automatic liver tumor segmentation on dynamic contrast enhanced MRI using 4D information: deep learning model based on 3D convolution and convolutional LSTM[J]. IEEE Trans Med Imaging, 2022, 41(10): 2965-2976. DOI: 10.1109/TMI.2022.3175461.
[16]
LUO X, LI P W, CHEN H Y, et al. Automatic segmentation of hepatocellular carcinoma on dynamic contrast-enhanced MRI based on deep learning[J/OL]. Phys Med Biol, 2024, 69(6) [2025-03-10]. https://doi.org/10.1088/1361-6560/ad2790. DOI: 10.1088/1361-6560/ad2790.
[17]
LI S, LIU K C, RONG C, et al. Deep learning-based automatic segmentation combined with radiomics to predict post-TACE liver failure in HCC patients[J]. J Hepatocell Carcinoma, 2024, 11: 2471-2480. DOI: 10.2147/JHC.S499436.
[18]
LYU F, MA A J, YIP T C, et al. Weakly supervised liver tumor segmentation using couinaud segment annotation[J]. IEEE Trans Med Imaging, 2022, 41(5): 1138-1149. DOI: 10.1109/TMI.2021.3132905.
[19]
LIU Y L, WANG B, MO X, et al. A deep learning workflow for mass-forming intrahepatic cholangiocarcinoma and hepatocellular carcinoma classification based on MRI[J]. Curr Oncol, 2022, 30(1): 529-544. DOI: 10.3390/curroncol30010042.
[20]
OESTMANN P M, WANG C J, SAVIC L J, et al. Deep learning-assisted differentiation of pathologically proven atypical and typical hepatocellular carcinoma (HCC) versus non-HCC on contrast-enhanced MRI of the liver[J]. Eur Radiol, 2021, 31(7): 4981-4990. DOI: 10.1007/s00330-020-07559-1.
[21]
WEI H, ZHENG T Y, ZHANG X L, et al. Deep learning-based 3D quantitative total tumor burden predicts early recurrence of BCLC A and B HCC after resection[J]. Eur Radiol, 2025, 35(1): 127-139. DOI: 10.1007/s00330-024-10941-y.
[22]
LIU Y, PU H. Study on medical image artificial intelligence in predicting microvessel invasion of hepatocellular carcinoma[J]. Radiol Pract, 2024, 39(6): 830-834. DOI: 10.13609/j.cnki.1000-0313.2024.06.019.
[23]
LI J, HU G C, JIANG X Y, et al. Research progress of radiomics and deep learning in predicting microvascular invasion of hepatocellular carcinoma[J]. Chin J Magn Reson Imag, 2023, 14(3): 184-188. DOI: 10.12015/issn.1674-8034.2023.03.034.
[24]
ZHANG J, HUANG S L, XU Y K, et al. Diagnostic accuracy of artificial intelligence based on imaging data for preoperative prediction of microvascular invasion in hepatocellular carcinoma: A systematic review and meta-analysis[J/OL]. Front Oncol, 2022, 12: 763842 [2025-03-10]. https://pubmed.ncbi.nlm.nih.gov/35280776/. DOI: 10.3389/fonc.2022.763842.
[25]
JIANG Y, WANG K, WANG Y R, et al. Preoperative and prognostic prediction of microvascular invasion in hepatocellular carcinoma: a review based on artificial intelligence[J/OL]. Technol Cancer Res Treat, 2023, 22: 15330338231212726 [2025-03-10]. https://pubmed.ncbi.nlm.nih.gov/37933176/. DOI: 10.1177/15330338231212726.
[26]
LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436-444. DOI: 10.1038/nature14539.
[27]
CHU T J, ZHAO C, ZHANG J, et al. Application of a convolutional neural network for multitask learning to simultaneously predict microvascular invasion and vessels that encapsulate tumor clusters in hepatocellular carcinoma[J]. Ann Surg Oncol, 2022, 29(11): 6774-6783. DOI: 10.1245/s10434-022-12000-6.
[28]
ZHONG Y, CHEN L F, DING F D, et al. Assessing microvascular invasion in HBV-related hepatocellular carcinoma: an online interactive nomogram integrating inflammatory markers, radiomics, and convolutional neural networks[J/OL]. Front Oncol, 2024, 14: 1401095 [2025-01-04]. https://doi.org/10.3389/fonc.2024.1401095. DOI: 10.3389/fonc.2024.1401095.
[29]
LI Z, WANG Y, ZHU Y, et al. Modality-based attention and dual-stream multiple instance convolutional neural network for predicting microvascular invasion of hepatocellular carcinoma[J/OL]. Front Oncol, 2023, 13: 1195110 [2025-01-04]. https://pubmed.ncbi.nlm.nih.gov/37434971/. DOI: 10.3389/fonc.2023.1195110.
[30]
ZHOU W, JIAN W W, CEN X P, et al. Prediction of microvascular invasion of hepatocellular carcinoma based on contrast-enhanced MR and 3D convolutional neural networks[J/OL]. Front Oncol, 2021, 11: 588010 [2025-01-04]. https://pubmed.ncbi.nlm.nih.gov/33854959/. DOI: 10.3389/fonc.2021.588010.
[31]
WEI J W, JIANG H Y, ZENG M S, et al. Prediction of microvascular invasion in hepatocellular carcinoma via deep learning: A multi-center and prospective validation study[J/OL]. Cancers (Basel), 2021, 13(10): 2368 [2025-01-04]. https://pubmed.ncbi.nlm.nih.gov/34068972/. DOI: 10.3390/cancers13102368.
[32]
ZHANG K, RU J Y, WANG W B, et al. ViT-based quantification of intratumoral heterogeneity for predicting the early recurrence in HCC following multiple ablation[J/OL]. Liver Int, 2025, 45(4): e16051 [2025-01-04]. https://pubmed.ncbi.nlm.nih.gov/39526488/. DOI: 10.1111/liv.16051.
[33]
CHEN Z B, DOU M, LUO X, et al. Enhanced liver and tumor segmentation using a self-supervised swin-transformer-based framework with multitask learning and attention mechanisms[J/OL]. Appl Sci, 2025, 15(7): 3985 [2025-01-04]. https://www.mdpi.com/2076-3417/15/7/3985. DOI: 10.3390/app15073985.
[34]
WANG Z, FU S S, FU S, et al. Hybrid Gabor attention convolution and transformer interaction network with hierarchical monitoring mechanism for liver and tumor segmentation[J/OL]. Sci Rep, 2025, 15: 8318 [2025-03-14]. https://doi.org/10.1038/s41598-025-90151-8. DOI: 10.1038/s41598-025-90151-8.
[35]
HONG S B, CHOI S H, KIM S Y, et al. MRI features for predicting microvascular invasion of hepatocellular carcinoma: A systematic review and meta-analysis[J]. Liver Cancer, 2021, 10(2): 94-106. DOI: 10.1159/000513704.
[36]
CHEN Y D, ZHANG L, ZHOU Z P, et al. Radiomics and nomogram of magnetic resonance imaging for preoperative prediction of microvascular invasion in small hepatocellular carcinoma[J]. World J Gastroenterol, 2022, 28(31): 4399-4416. DOI: 10.3748/wjg.v28.i31.4399.
[37]
WANG G Y, JIAN W W, CEN X P, et al. Prediction of microvascular invasion of hepatocellular carcinoma based on preoperative diffusion-weighted MR using deep learning[J]. Acad Radiol, 2021, 28(Suppl 1): S118-S127. DOI: 10.1016/j.acra.2020.11.014.
[38]
LIU B E, ZENG Q Y, HUANG J B, et al. IVIM using convolutional neural networks predicts microvascular invasion in HCC[J]. Eur Radiol, 2022, 32(10): 7185-7195. DOI: 10.1007/s00330-022-08927-9.
[39]
ZHANG Y X, LV X F, QIU J L, et al. Deep learning with 3D convolutional neural network for noninvasive prediction of microvascular invasion in hepatocellular carcinoma[J]. J Magn Reson Imaging, 2021, 54(1): 134-143. DOI: 10.1002/jmri.27538.
[40]
MENG X X, SUN K C, XU J, et al. Multi-modal modality-masked diffusion network for brain MRI synthesis with random modality missing[J]. IEEE Trans Med Imaging, 2024, 43(7): 2587-2598. DOI: 10.1109/TMI.2024.3368664.
[41]
ZHANG Y, PENG C T, WANG Q L, et al. Unified multi-modal image synthesis for missing modality imputation[J]. IEEE Trans Med Imag, 2025, 44(1): 4-18. DOI: 10.1109/TMI.2024.3424785.
[42]
WANG T, LI Z, YU H Y, et al. Prediction of microvascular invasion in hepatocellular carcinoma based on preoperative Gd-EOB-DTPA-enhanced MRI: Comparison of predictive performance among 2D, 2D-expansion and 3D deep learning models[J/OL]. Front Oncol, 2023, 13: 987781 [2025-01-04]. https://pubmed.ncbi.nlm.nih.gov/36816963/. DOI: 10.3389/fonc.2023.987781.
[43]
CHANG Y S, TSAI M J, TSAI C J, et al. A new model based on preoperative AFP, albumin, and tumor burden score for predicting microvascular invasion in early-stage HCC[J]. Am J Cancer Res, 2024, 14(10): 4979-4988. DOI: 10.62347/ZGRJ7827.
[44]
HUANG X W, LI Y, JIANG L N, et al. Nomogram for preoperative estimation of microvascular invasion risk in hepatocellular carcinoma[J/OL]. Transl Oncol, 2024, 45: 101986 [2025-01-04]. https://pubmed.ncbi.nlm.nih.gov/38723299/. DOI: 10.1016/j.tranon.2024.101986.
[45]
CHANG Y, GUO T Y, ZHU B, et al. A novel nomogram for predicting microvascular invasion in hepatocellular carcinoma[J/OL]. Ann Hepatol, 2023, 28(6): 101136 [2025-01-04]. https://pubmed.ncbi.nlm.nih.gov/37479060/. DOI: 10.1016/j.aohep.2023.101136.
[46]
SONG D J, WANG Y Y, WANG W T, et al. Using deep learning to predict microvascular invasion in hepatocellular carcinoma based on dynamic contrast-enhanced MRI combined with clinical parameters[J]. J Cancer Res Clin Oncol, 2021, 147(12): 3757-3767. DOI: 10.1007/s00432-021-03617-3.
[47]
WANG F, ZHAN G, CHEN Q Q, et al. Multitask deep learning for prediction of microvascular invasion and recurrence-free survival in hepatocellular carcinoma based on MRI images[J]. Liver Int, 2024, 44(6): 1351-1362. DOI: 10.1111/liv.15870.

PREV Research progress in imaging evaluation of liver reserve function
NEXT Advances in DWI models for treatment response assessment in rectal cancer
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn