Share:
Share this content in WeChat
X
Review
Advances in DWI models for treatment response assessment in rectal cancer
LI Wanqing  ZHANG Guangwen  ZHANG Jinsong 

Cite this article as: LI W Q, ZHANG G W, ZHANG J S. Advances in DWI models for treatment response assessment in rectal cancer[J]. Chin J Magn Reson Imaging, 2025, 16(10): 196-201. DOI:10.12015/issn.1674-8034.2025.10.031.


[Abstract] Precise early diagnosis and dynamic therapeutic monitoring of rectal cancer have emerged as pivotal challenges in clinical oncology. Diffusion-weighted imaging (DWI), by characterizing the restricted Brownian motion of water molecules, enables non-invasive interrogation of structural heterogeneity within the tumor microenvironment. Various diffusion models demonstrate considerable application value in rectal cancer treatment response assessment, yet each exhibits unique technical characteristics, applicable conditions, and inherent limitations. Despite technological advancements, critical knowledge gaps persist regarding the mechanistic correlations between imaging parameters and tumor microenvironmental features, the clinical translation of advanced diffusion models, and the integration of multimodal imaging data. Current limitations in assessment based on DWI models include the lack of standardized scanning protocols, insufficient utilization of advanced analytical approaches, and inadequate multimodal data integration. Future developments should focus on optimizing acquisition parameters while incorporating artificial intelligence and multimodal data fusion techniques to enhance assessment accuracy. This review synthesizes recent progress in DWI models for rectal cancer treatment evaluation, aiming to provide a foundation for subsequent research in this evolving field.
[Keywords] rectal cancer;magnetic resonance imaging;diffusion-weighted imaging;intravoxel incoherent motion;stretched exponential model;diffusion kurtosis imaging;pathological complete response

LI Wanqing   ZHANG Guangwen   ZHANG Jinsong*  

Department of Radiology, Xijing Hospital, Air Force Medical University, Xi'an 710032, China

Corresponding author: ZHANG J S, E-mail: stspine@163.com

Conflicts of interest   None.

Received  2025-07-04
Accepted  2025-10-10
DOI: 10.12015/issn.1674-8034.2025.10.031
Cite this article as: LI W Q, ZHANG G W, ZHANG J S. Advances in DWI models for treatment response assessment in rectal cancer[J]. Chin J Magn Reson Imaging, 2025, 16(10): 196-201. DOI:10.12015/issn.1674-8034.2025.10.031.

[1]
SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660.
[2]
BAIDOUN F, ELSHIWY K, ELKERAIE Y, et al. Colorectal cancer epidemiology: recent trends and impact on outcomes[J]. Curr Drug Targets, 2021, 22(9): 998-1009. DOI: 10.2174/1389450121999201117115717.
[3]
YAEGER R, WEISS J, PELSTER M S, et al. Adagrasib with or without cetuximab in colorectal cancer with mutated KRAS G12C[J]. N Engl J Med, 2023, 388(1): 44-54. DOI: 10.1056/NEJMoa2212419.
[4]
XIAO W W, LUO H L, YAO Y, et al. Total neoadjuvant treatment and PD-1/PD-L1 checkpoint inhibitor in locally advanced rectal cancer[J/OL]. Front Immunol, 2023, 14: 1149122 [2025-07-03] . https://pmc.ncbi.nlm.nih.gov/articles/PMC10079866/. DOI: 10.3389/fimmu.2023.1149122.
[5]
XIAO W W, CHEN G, GAO Y H, et al. Effect of neoadjuvant chemoradiotherapy with or without PD-1 antibody sintilimab in pMMR locally advanced rectal cancer: a randomized clinical trial[J/OL]. Cancer Cell, 2024, 42(9): 1570-1581.e4 [2025-07-03]. https://pubmed.ncbi.nlm.nih.gov/39094560/. DOI: 10.1016/j.ccell.2024.07.004.
[6]
KIM Y, LEE S K, KIM J Y, et al. Pitfalls of diffusion-weighted imaging: clinical utility of T2 shine-through and T2 black-out for musculoskeletal diseases[J/OL]. Diagnostics (Basel), 2023, 13(9): 1647 [2025-07-03]. https://pmc.ncbi.nlm.nih.gov/articles/PMC10177815/. DOI: 10.3390/diagnostics13091647.
[7]
VIJITHANANDA S M, JAYATILAKE M L, GONÇALVES T C, et al. Texture feature analysis of MRI-ADC images to differentiate glioma grades using machine learning techniques[J/OL]. Sci Rep, 2023, 13(1): 15772 [2025-07-03]. https://pmc.ncbi.nlm.nih.gov/articles/PMC10517003/. DOI: 10.1038/s41598-023-41353-5.
[8]
SUN Y S, ZHANG X P, TANG L, et al. Locally advanced rectal carcinoma treated with preoperative chemotherapy and radiation therapy: preliminary analysis of diffusion-weighted MR imaging for early detection of tumor histopathologic downstaging[J]. Radiology, 2010, 254(1): 170-178. DOI: 10.1148/radiol.2541082230.
[9]
WANG C H, WANG G Y, ZHANG Y F, et al. Differentiation of benign and malignant breast lesions using diffusion-weighted imaging with a fractional-order Calculus model[J/OL]. Eur J Radiol, 2023, 159: 110646 [2025-07-03]. https://pubmed.ncbi.nlm.nih.gov/36577184/. DOI: 10.1016/j.ejrad.2022.110646.
[10]
YANG A, ZHOU P. Progress of quantitative prediction of the pathologic complete response after neoadjuvant chemoradiotherapy for locally advanced rectal cancer with functional MRI[J]. Chin J Magn Reson Imag, 2024, 15(7): 210-215. DOI: 10.12015/issn.1674-8034.2024.07.035.
[11]
YANG A R, CAO Y T, HOU Y Y, et al. The research progress of MRI in predicting the efficacy of neoadjuvant chemoradiotherapy for rectal cancer[J]. Chin J Magn Reson Imag, 2025, 16(2): 204-209, 214. DOI: 10.12015/issn.1674-8034.2025.02.033.
[12]
WANG J, HU S, LIANG P, et al. R2* mapping and reduced field-of-view diffusion-weighted imaging for preoperative assessment of nonenlarged lymph node metastasis in rectal cancer[J/OL]. NMR Biomed, 2024, 37(10): e5174 [2025-07-03]. https://pubmed.ncbi.nlm.nih.gov/38712650/. DOI: 10.1002/nbm.5174.
[13]
YACHEVA A, DARDANOV D, ZLATAREVA D. The multipurpose usage of diffusion-weighted MRI in rectal cancer[J/OL]. Medicina (Kaunas), 2023, 59(12): 2162 [2025-07-03]. https://pmc.ncbi.nlm.nih.gov/articles/PMC10744943/. DOI: 10.3390/medicina59122162.
[14]
ZHANG G W, XU Z L, ZHENG J Y, et al. Prognostic value of multi b-value DWI in patients with locally advanced rectal cancer[J]. Eur Radiol, 2023, 33(3): 1928-1937. DOI: 10.1007/s00330-022-09159-7.
[15]
AGROTIS G, POOCH E, ABDELATTY M, et al. Diagnostic performance of ADC and ADCratio in MRI-based prostate cancer assessment: a systematic review and meta-analysis[J]. Eur Radiol, 2025, 35(1): 404-416. DOI: 10.1007/s00330-024-10890-6.
[16]
DRAGO S G, MAINO C, GIANDOLA T P, et al. Correlations between apparent diffusion coefficient (ADC) and prognosis in patients with locally advanced rectal cancer[J/OL]. Life (Basel), 2024, 14(10): 1282 [2025-07-03]. https://pmc.ncbi.nlm.nih.gov/articles/PMC11509644/. DOI: 10.3390/life14101282.
[17]
BABATÜRK A, ERDEN A, GEÇIM İ E. Apparent diffusion coefficient histogram analysis for predicting neoadjuvant chemoradiotherapy response in patients with rectal cancer[J]. Diagn Interv Radiol, 2022, 28(5): 403-409. DOI: 10.5152/dir.2022.201112.
[18]
JIMÉNEZ DE LOS SANTOS M E, REYES-PÉREZ J A, DOMÍNGUEZ OSORIO V, et al. Whole lesion histogram analysis of apparent diffusion coefficient predicts therapy response in locally advanced rectal cancer[J]. World J Gastroenterol, 2022, 28(23): 2609-2624. DOI: 10.3748/wjg.v28.i23.2609.
[19]
CHEN H, LI X, PAN X Y, et al. Feature selection based on unsupervised clustering evaluation for predicting neoadjuvant chemoradiation response for patients with locally advanced rectal cancer[J/OL]. Phys Med Biol, 2023, 68(23) [2025-07-03]. https://pubmed.ncbi.nlm.nih.gov/37972413/. DOI: 10.1088/1361-6560/ad0d46.
[20]
SUROV A, PECH M, POWERSKI M, et al. Pretreatment apparent diffusion coefficient cannot predict histopathological features and response to neoadjuvant radiochemotherapy in rectal cancer: a meta-analysis[J]. Dig Dis, 2022, 40(1): 33-49. DOI: 10.1159/000515631.
[21]
CHAI Y X, NIU Y C, CHENG R X, et al. Dynamic contrast-enhanced MRI combined with intravoxel incoherent motion in quantitative evaluation for preoperative risk stratification of resectable rectal adenocarcinoma[J/OL]. Oncol Lett, 2024, 29(2): 68 [2025-07-03]. https://pmc.ncbi.nlm.nih.gov/articles/PMC11605276/. DOI: 10.3892/ol.2024.14814.
[22]
ZHANG J, ZHENG Y R, LI L, et al. Combination of IVIM with DCE-MRI for diagnostic and prognostic evaluation of breast cancer[J/OL]. Magn Reson Imag, 2024, 113: 110204 [2025-07-03]. https://pubmed.ncbi.nlm.nih.gov/38971263/. DOI: 10.1016/j.mri.2024.07.003.
[23]
HU H B, JIANG H J, WANG S, et al. 3.0 T MRI IVIM-DWI for predicting the efficacy of neoadjuvant chemoradiation for locally advanced rectal cancer[J]. Abdom Radiol (NY), 2021, 46(1): 134-143. DOI: 10.1007/s00261-020-02594-4.
[24]
BORTOLOTTO C, STELLA G M, MESSANA G, et al. Correlation between PD-L1 expression of non-small cell lung cancer and data from IVIM-DWI acquired during magnetic resonance of the Thorax: preliminary results[J/OL]. Cancers (Basel), 2022, 14(22): 5634 [2025-07-03]. https://pmc.ncbi.nlm.nih.gov/articles/PMC9688282/. DOI: 10.3390/cancers14225634.
[25]
TAO J, YIN Z Z, LI X W, et al. Correlation between IVIM parameters and microvessel architecture: direct comparison of MRI images and pathological slices in an orthotopic murine model of rhabdomyosarcoma[J]. Eur Radiol, 2023, 33(12): 8576-8584. DOI: 10.1007/s00330-023-09835-2.
[26]
XU Q Y, XU Y Y, SUN H L, et al. Quantitative intravoxel incoherent motion parameters derived from whole-tumor volume for assessing pathological complete response to neoadjuvant chemotherapy in locally advanced rectal cancer[J]. J Magn Reson Imaging, 2018, 48(1): 248-258. DOI: 10.1002/jmri.25931.
[27]
WEN L, HOU J, ZHOU J M, et al. Intravoxel incoherent motion diffusion-weighted imaging for discriminating the pathological response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer[J/OL]. Sci Rep, 2017, 7: 8496 [2025-07-03]. https://pmc.ncbi.nlm.nih.gov/articles/PMC5561073/. DOI: 10.1038/s41598-017-09227-9.
[28]
YANG A, LIN L B, XU H, et al. Combination of intravoxel incoherent motion histogram parameters and clinical characteristics for predicting response to neoadjuvant chemoradiation in patients with locally advanced rectal cancer[J]. Abdom Radiol (NY), 2025, 50(4): 1505-1515. DOI: 10.1007/s00261-024-04629-6.
[29]
LIANG C Y, CHEN M D, ZHAO X X, et al. Multiple mathematical models of diffusion-weighted magnetic resonance imaging combined with prognostic factors for assessing the response to neoadjuvant chemotherapy and radiation therapy in locally advanced rectal cancer[J]. Eur J Radiol, 2019, 110: 249-255. DOI: 10.1016/j.ejrad.2018.12.005.
[30]
YANG L Q, XIA C C, ZHAO J, et al. The value of intravoxel incoherent motion and diffusion kurtosis imaging in the assessment of tumor regression grade and T stages after neoadjuvant chemoradiotherapy in patients with locally advanced rectal cancer[J/OL]. Eur J Radiol, 2021, 136: 109504 [2025-07-03]. https://pubmed.ncbi.nlm.nih.gov/33421885/. DOI: 10.1016/j.ejrad.2020.109504.
[31]
LIU S Y, WEN L, HOU J, et al. Predicting the pathological response to chemoradiotherapy of non-mucinous rectal cancer using pretreatment texture features based on intravoxel incoherent motion diffusion-weighted imaging[J]. Abdom Radiol (NY), 2019, 44(8): 2689-2698. DOI: 10.1007/s00261-019-02032-0.
[32]
ZHANG J H, XING X Y, WANG Q Z, et al. Preliminary study of monoexponential, biexponential, and stretched-exponential models of diffusion-weighted MRI and diffusion kurtosis imaging on differential diagnosis of spinal metastases and chordoma[J]. Eur Spine J, 2022, 31(11): 3130-3138. DOI: 10.1007/s00586-022-07269-w.
[33]
BENNETT K M, SCHMAINDA K M, BENNETT R T, et al. Characterization of continuously distributed cortical water diffusion rates with a stretched-exponential model[J]. Magn Reson Med, 2003, 50(4): 727-734. DOI: 10.1002/mrm.10581.
[34]
GUO Y X, CHEN J J, ZHANG Y F, et al. Differentiating Cytokeratin 19 expression of hepatocellular carcinoma by using multi-b-value diffusion-weighted MR imaging with mono-exponential, stretched exponential, intravoxel incoherent motion, diffusion kurtosis imaging and fractional order calculus models[J/OL]. Eur J Radiol, 2022, 150: 110237 [2025-07-03]. https://pubmed.ncbi.nlm.nih.gov/35278979/. DOI: 10.1016/j.ejrad.2022.110237.
[35]
ZHU H B, ZHANG X Y, ZHOU X H, et al. Assessment of pathological complete response to preoperative chemoradiotherapy by means of multiple mathematical models of diffusion-weighted MRI in locally advanced rectal cancer: a prospective single-center study[J]. J Magn Reson Imaging, 2017, 46(1): 175-183. DOI: 10.1002/jmri.25567.
[36]
SINGHAL S, SARAN S, SAXENA S, et al. Role of diffusion kurtosis imaging in evaluating microstructural changes in spinal cord of patients with cervical spondylosis[J]. Eur Spine J, 2023, 32(3): 986-993. DOI: 10.1007/s00586-023-07559-x.
[37]
TAHA H T, CHAD J A, CHEN J J. DKI enhances the sensitivity and interpretability of age-related DTI patterns in the white matter of UK biobank participants[J]. Neurobiol Aging, 2022, 115: 39-49. DOI: 10.1016/j.neurobiolaging.2022.03.008.
[38]
ŻUROWSKA A, PĘKSA R, GRZYWIŃSKA M, et al. Comparison of diffusion kurtosis imaging and standard mono-exponential apparent diffusion coefficient in diagnosis of significant prostate cancer-a correlation with gleason score assessed on whole-mount histopathology specimens[J/OL]. Diagnostics (Basel), 2023, 13(2): 173 [2025-07-03]. https://pmc.ncbi.nlm.nih.gov/articles/PMC9858256/. DOI: 10.3390/diagnostics13020173.
[39]
DUAN Z Q, FANG S B, HU J W, et al. Correlation of intravoxel incoherent motion and diffusion kurtosis MR imaging models with reactive stromal grade in prostate cancer[J]. J Magn Reson Imaging, 2023, 58(2): 630-639. DOI: 10.1002/jmri.28546.
[40]
LI X W, YANG L, WANG Q M, et al. Soft tissue sarcomas: IVIM and DKI correlate with the expression of HIF-1α on direct comparison of MRI and pathological slices[J]. Eur Radiol, 2021, 31(7): 4669-4679. DOI: 10.1007/s00330-020-07526-w.
[41]
ZHANG X Y, WANG L, ZHU H T, et al. Predicting rectal cancer response to neoadjuvant chemoradiotherapy using deep learning of diffusion kurtosis MRI[J]. Radiology, 2020, 296(1): 56-64. DOI: 10.1148/radiol.2020190936.
[42]
HU F X, TANG W, SUN Y Q, et al. The value of diffusion kurtosis imaging in assessing pathological complete response to neoadjuvant chemoradiation therapy in rectal cancer: a comparison with conventional diffusion-weighted imaging[J]. Oncotarget, 2017, 8(43): 75597-75606. DOI: 10.18632/oncotarget.17491.
[43]
DU M, ZOU D, GAO P, et al. Evaluation of a continuous-time random-walk diffusion model for the differentiation of malignant and benign breast lesions and its association with Ki-67 expression[J/OL]. NMR Biomed, 2023, 36(8): e4920 [2025-07-03]. https://pubmed.ncbi.nlm.nih.gov/36912198/. DOI: 10.1002/nbm.4920.
[44]
SHENG Y R, CHANG H, XUE K, et al. Characterization of prostatic cancer lesion and gleason grade using a continuous-time random-walk diffusion model at high b-values[J/OL]. Front Oncol, 2024, 14: 1389250 [2025-07-03]. https://pubmed.ncbi.nlm.nih.gov/38854720/. DOI: 10.3389/fonc.2024.1389250.
[45]
ZHOU M, CHEN M Y, CHEN M N, et al. Predictive value of mono-exponential and multiple mathematical models in locally advanced rectal cancer response to neoadjuvant chemoradiotherapy[J]. Abdom Radiol (NY), 2025, 50(3): 1105-1116. DOI: 10.1007/s00261-024-04588-y.
[46]
PAN Y N, GU M Y, MAO Q L, et al. Value of perfusion parameters from golden-angle radial sparse parallel dynamic contrast-enhanced magnetic resonance imaging in predicting pathological complete response after neoadjuvant chemoradiotherapy for locally advanced rectal cancer[J]. Diagn Interv Radiol, 2024, 30(4): 228-235. DOI: 10.4274/dir.2024.232460.
[47]
TAN Z W, XIE L L, CHENG L, et al. Combination of multiple MRI parameters related to signal intensity and volume for predicting response to neoadjuvant chemoradiotherapy by patients with locally advanced rectal cancer[J/OL]. Curr Med Imaging, 2023 [2025-07-03]. https://pubmed.ncbi.nlm.nih.gov/38031786/. DOI: 10.2174/0115734056258900231025043146.
[48]
XU N, HUANG F C, LI W L, et al. Predictive value of combination of MRI tumor regression grade and apparent diffusion coefficient for pathological complete remission after neoadjuvant treatment of locally advanced rectal cancer[J]. Chin J Gastrointest Surg, 2021, 24(4): 359-365. DOI: 10.3760/cma.j.cn.441530-20200225-00089.
[49]
TEY J, TAN J K, TAN K K, et al. Restaging of rectal cancer with hybrid positron emission tomography magnetic resonance imaging after preoperative chemoradiotherapy[J]. Ann Acad Med Singap, 2023, 52(6): 289-295. DOI: 10.47102/annals-acadmedsg.2022378.
[50]
ZHANG L, JIN Z W, YANG F, et al. Added value of histogram analysis of intravoxel incoherent motion and diffusion kurtosis imaging for the evaluation of complete response to neoadjuvant therapy in locally advanced rectal cancer[J]. Eur Radiol, 2025, 35(3): 1669-1678. DOI: 10.1007/s00330-024-11081-z.

PREV Recent advances in MRI-based deep learning prediction of microvascular invasion in hepatocellular carcinoma
NEXT Research progress in predicting postoperative recurrence of bladder cancer using magnetic resonance imaging
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn