Share:
Share this content in WeChat
X
Review
Research progress in predicting postoperative recurrence of bladder cancer using magnetic resonance imaging
CHAI Zhenzhen  WANG Xiaochun 

Cite this article as: CHAI Z Z, WANG X C. Research progress in predicting postoperative recurrence of bladder cancer using magnetic resonance imaging[J]. Chin J Magn Reson Imaging, 2025, 16(10): 202-207. DOI:10.12015/issn.1674-8034.2025.10.032.


[Abstract] Bladder cancer (BCa) is one of the most common malignant tumors of the urinary system. It has a high postoperative recurrence rate, and the clinical manifestations of recurrence are often subtle, leading to delayed detection and poor prognosis. Accurate prediction of BCa recurrence after surgery is of great significance for guiding individualized precision treatment and improving patient outcomes. Currently, the prediction of BCa recurrence mainly relies on clinical factor-based scoring systems and risk tables. However, these methods depend on clinical and histological factors and are only applicable to non-muscle-invasive BCa (NMIBC), making them somewhat inadequate for recurrence discrimination. In contrast, magnetic resonance imaging (MRI), with its high soft tissue resolution and the advantages of multi-sequence and multi-parameter imaging, provides quantitative and objective information that goes beyond the subjective descriptions of traditional imaging. Combined with artificial intelligence analysis technology, it offers outstanding advantages in evaluating the recurrence of BCa after surgery. Nevertheless, existing reviews on MRI in predicting postoperative recurrence of BCa are scarce and not systematic enough, lacking integration and analysis of the latest research results and technical applications. This article reviews the research on MRI in predicting BCa recurrence, analyzes its current strengths and limitations, and explores future directions, aiming to guide clinical practice, improve the prognosis of BCa patients, and provide new ideas for future research.
[Keywords] bladder cancer;radical cystectomy;recurrence;magnetic resonance imaging;prognosis

CHAI Zhenzhen1, 2   WANG Xiaochun1*  

1 College of Medical Imaging, First Hospital of Shanxi Medical University, Taiyuan 030001, China

2 Department of Medical Imaging, Heji Hospital Affiliated to Changzhi Medical College, Changzhi 046000, China

Corresponding author: WANG X C, E-mail: 2010xiaochun@163.com

Conflicts of interest   None.

Received  2025-06-24
Accepted  2025-10-10
DOI: 10.12015/issn.1674-8034.2025.10.032
Cite this article as: CHAI Z Z, WANG X C. Research progress in predicting postoperative recurrence of bladder cancer using magnetic resonance imaging[J]. Chin J Magn Reson Imaging, 2025, 16(10): 202-207. DOI:10.12015/issn.1674-8034.2025.10.032.

[1]
SIEGEL R L, MILLER K D, WAGLE N S, et al. Cancer statistics, 2023[J]. CA A Cancer J Clin, 2023, 73(1): 17-48. DOI: 10.3322/caac.21763.
[2]
VAN DER HEIJDEN A G, BRUINS H M, CARRION A, et al. European association of urology guidelines on muscle-invasive and metastatic bladder cancer: summary of the 2025 guidelines[J]. Eur Urol, 2025, 87(5): 582-600. DOI: 10.1016/j.eururo.2025.02.019.
[3]
BRAY F, LAVERSANNE M, SUNG H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2024, 74(3): 229-263. DOI: 10.3322/caac.21834.
[4]
JUBBER I, ONG S, BUKAVINA L, et al. Epidemiology of bladder cancer in 2023: a systematic review of risk factors[J]. Eur Urol, 2023, 84(2): 176-190. DOI: 10.1016/j.eururo.2023.03.029.
[5]
BREE K K, SHAN Y, HENSLEY P J, et al. Management, surveillance patterns, and costs associated with low-grade papillary stage Ta non-muscle-invasive bladder cancer among older adults, 2004-2013[J/OL]. JAMA Netw Open, 2022, 5(3): e223050 [2025-06-24]. http://www.ncbi.nlm.nih.gov/pubmed/35302627. DOI: 10.1001/jamanetworkopen.2022.3050.
[6]
AHMADI N, SHAFEE H, MOUDI E. Prediction of recurrence risk in patients with non-muscle-invasive bladder cancer[J]. Asian J Urol, 2024, 11(4): 625-632. DOI: 10.1016/j.ajur.2023.04.007.
[7]
DYRSKJØT L, HANSEL D E, EFSTATHIOU J A, et al. Bladder cancer[J/OL]. Nat Rev Dis Primers, 2023, 9: 58 [2025-06-24]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11218610/. DOI: 10.1038/s41572-023-00468-9.
[8]
QUIGNOT N, JIANG H, DOOBAREE I U, et al. Healthcare resource utilization and cost burden of BCG-treated non-muscle invasive bladder cancer patients in Germany: a retrospective claims analysis[J]. Clinicoecon Outcomes Res, 2023, 15: 227-237. DOI: 10.2147/CEOR.S398180.
[9]
TAN W S, HALL E, KAMAT A M, et al. Clinical trial design for non-muscle-invasive bladder cancer[J]. Nat Rev Urol, 2023, 20(10): 575-576. DOI: 10.1038/s41585-023-00789-0.
[10]
YAJIMA S, YOSHIDA S, TAKAHARA T, et al. Usefulness of the inchworm sign on DWI for predicting PT1 bladder cancer progression[J]. Eur Radiol, 2019, 29(7): 3881-3888. DOI: 10.1007/s00330-019-06119-6.
[11]
GE L L, CHEN Y T, YAN C Y, et al. Study progress of radiomics with machine learning for precision medicine in bladder cancer management[J/OL]. Front Oncol, 2019, 9: 1296 [2025-06-24]. http://www.ncbi.nlm.nih.gov/pubmed/31850202. DOI: 10.3389/fonc.2019.01296.
[12]
SYLVESTER R J, VAN DER MEIJDEN A P, OOSTERLINCK W, et al. Predicting recurrence and progression in individual patients with stage Ta T1 bladder cancer using EORTC risk tables: a combined analysis of 2596 patients from seven EORTC trials[J/OL]. Eur Urol, 2006, 49(3): [2025-06-24]. http://www.ncbi.nlm.nih.gov/pubmed/16442208. DOI: 10.1016/j.eururo.2005.12.031.
[13]
ŚLUSARCZYK A, GARBAS K, PUSTUŁA P, et al. Assessing the predictive accuracy of EORTC, CUETO and EAU risk stratification models for high-grade recurrence and progression after Bacillus calmette-guérin therapy in non-muscle-invasive bladder cancer[J/OL]. Cancers (Basel), 2024, 16(9): 1684 [2025-06-24].http://www.ncbi.nlm.nih.gov/pubmed/38730636. DOI: 10.3390/cancers16091684.
[14]
FERNANDEZ-GOMEZ J, MADERO R, SOLSONA E, et al. Predicting nonmuscle invasive bladder cancer recurrence and progression in patients treated with Bacillus Calmette-Guerin: the CUETO scoring model[J]. J Urol, 2009, 182(5): 2195-2203. DOI: 10.1016/j.juro.2009.07.016.
[15]
LOBO N, HENSLEY P J, BREE K K, et al. Updated European association of urology (EAU) prognostic factor risk groups overestimate the risk of progression in patients with non-muscle-invasive bladder cancer treated with Bacillus calmette-guérin[J]. Eur Urol Oncol, 2022, 5(1): 84-91. DOI: 10.1016/j.euo.2021.11.006.
[16]
GUERRERO-RAMOS F, SUBIELA J D, RODRÍGUEZ-FABA Ó, et al. Predicting recurrence and progression in patients with non-muscle-invasive bladder cancer: systematic review on the performance of risk stratification models[J]. Bladder Cancer, 2022, 8(4): 339-357. DOI: 10.3233/BLC-220055.
[17]
JOBCZYK M, STAWISKI K, FENDLER W, et al. Validation of EORTC, CUETO, and EAU risk stratification in prediction of recurrence, progression, and death of patients with initially non-muscle-invasive bladder cancer (NMIBC): a cohort analysis[J]. Cancer Med, 2020, 9(11): 4014-4025. DOI: 10.1002/cam4.3007.
[18]
PIAO X M, KIM S K, BYUN Y J, et al. Utility of a molecular signature for predicting recurrence and progression in non-muscle-invasive bladder cancer patients: comparison with the EORTC, CUETO and 2021 EAU risk groups[J/OL]. Int J Mol Sci, 2022, 23(22): 14481 [2025-06-24]. http://www.ncbi.nlm.nih.gov/pubmed/36430959. DOI: 10.3390/ijms232214481.
[19]
JOBCZYK M, STAWISKI K, KASZKOWIAK M, et al. Deep learning-based recalibration of the CUETO and EORTC prediction tools for recurrence and progression of non-muscle-invasive bladder cancer[J]. Eur Urol Oncol, 2022, 5(1): 109-112. DOI: 10.1016/j.euo.2021.05.006.
[20]
YUAN L H, LI D Y, MU D, et al. Combined T2 SPAIR, dynamic enhancement and DW imaging reliably detect T staging and grading of bladder cancer with 3.0T MRI[J/OL]. Front Oncol, 2020, 10: 582532 [2025-06-24]. http://www.ncbi.nlm.nih.gov/pubmed/33244456. DOI: 10.3389/fonc.2020.582532.
[21]
HAMMOUDA K, KHALIFA F, SOLIMAN A, et al. A multiparametric MRI-based CAD system for accurate diagnosis of bladder cancer staging[J/OL]. Comput Med Imaging Graph, 2021, 90: 101911 [2025-06-24]. https://www.sciencedirect.com/science/article/pii/S0895611121000604. DOI: 10.1016/j.compmedimag.2021.101911.
[22]
PANEBIANCO V, NARUMI Y, BARCHETTI G, et al. Should we perform multiparametric magnetic resonance imaging of the bladder before transurethral resection of bladder time to reconsider the rules[J]. Eur Urol, 2019, 76(1): 57-58. DOI: 10.1016/j.eururo.2019.03.046.
[23]
CAI Q, LING J, KONG L M, et al. Multiparametric MRI evaluation of VI-RADS for bladder tumors located at the ureteral orifice[J]. Radiology, 2022, 304(3): 593-599. DOI: 10.1148/radiol.220028.
[24]
ELWAHAB K M ABD, DESKY E A E, ELDERY M S, et al. Apparent diffusion coefficient value can predict poor Bacillus calmette-guérin responders in T1HG/NMIBC: prospective cohort study[J/OL]. Clin Genitourin Cancer, 2021, 19(4): e248-e254 [2025-06-24]. http://www.ncbi.nlm.nih.gov/pubmed/33839041. DOI: 10.1016/j.clgc.2021.03.001.
[25]
ZHANG X X, GUO J X, WANG L F, et al. Recurrence risk prediction for non-muscle-invasive bladder urothelial carcinoma using diffusion and clinicopathology features[J/OL]. Abdom Radiol (NY), 2025 [2025-06-24]. http://www.ncbi.nlm.nih.gov/pubmed/40434425. DOI: 10.1007/s00261-025-05023-6.
[26]
WANG Y, ZHANG W, XIAO W, et al. Feasibility of early evaluation for the recurrence of bladder cancer after trans-urethral resection: a comparison between magnetic resonance imaging and multidetector computed tomography[J]. Tomography, 2022, 9(1): 25-35. DOI: 10.3390/tomography9010003.
[27]
PANEBIANCO V, PECORARO M, DEL GIUDICE F, et al. VI-RADS for bladder cancer: current applications and future developments[J]. J Magn Reson Imaging, 2022, 55(1): 23-36. DOI: 10.1002/jmri.27361.
[28]
ELSHOLTZ F H J, ASBACH P, HAAS M, et al. Introducing the node reporting and data system 1.0 (node-RADS): a concept for standardized assessment of lymph nodes in cancer[J]. Eur Radiol, 2021, 31(8): 6116-6124. DOI: 10.1007/s00330-020-07572-4.
[29]
KOBAYASHI T, OWCZAREK T B, MCKIERNAN J M, et al. Modelling bladder cancer in mice: opportunities and challenges[J]. Nat Rev Cancer, 2015, 15(1): 42-54. DOI: 10.1038/nrc3858.
[30]
LUO C, HUANG B, WU Y K, et al. Use of Vesical Imaging-Reporting and Data System (VI-RADS) for detecting the muscle invasion of bladder cancer: a diagnostic meta-analysis[J]. Eur Radiol, 2020, 30(8): 4606-4614. DOI: 10.1007/s00330-020-06802-z.
[31]
WANG H J, LUO C, ZHANG F, et al. Multiparametric MRI for bladder cancer: validation of VI-RADS for the detection of detrusor muscle invasion[J]. Radiology, 2019, 291(3): 668-674. DOI: 10.1148/radiol.2019182506.
[32]
PANEBIANCO V, NARUMI Y, ALTUN E, et al. Multiparametric magnetic resonance imaging for bladder cancer: development of VI-RADS (vesical imaging-reporting and data system)[J]. Eur Urol, 2018, 74(3): 294-306. DOI: 10.1016/j.eururo.2018.04.029.
[33]
XU X P, HUANG Y P, LIU Y, et al. Multiparametric MRI-based VI-RADS: can it predict 1- to 5-year recurrence of bladder cancer [J]. Eur Radiol, 2024, 34(5): 3034-3045. DOI: 10.1007/s00330-023-10387-8.
[34]
KOZIKOWSKI M, ZAGRODZKA M, ZAWADZKI M, et al. The role of VI-RADS scoring criteria for predicting oncological outcomes in bladder cancer[J/OL]. World J Urol, 2024, 42(1): 438 [2025-06-24]. https://www.eu-focus.europeanurology.com/article/S2405-4569(21)00157-7/fulltext. DOI: 10.1007/s00345-024-05101-2.
[35]
KIM S H, HAN J H, JEONG S H, et al. Accuracy of actual stage prediction using Vesical Imaging Reporting and Data System (VI-RADS) before radical cystectomy for urothelial carcinoma in SUPER-UC-Cx[J]. Transl Androl Urol, 2023, 12(2): 168-175. DOI: 10.21037/tau-22-704.
[36]
KURAL S, PATHAK A K, SINGH S, et al. Prospective assessment of VI-RADS with muscle invasion in urinary bladder cancer and its implication on re-resection/restaging TURBT patients[J]. Ann Surg Oncol, 2025, 32(1): 609-618. DOI: 10.1245/s10434-024-16424-0.
[37]
THOENY H C, BELLIN M F, COMPERAT E M, et al. Vesical imaging-reporting and data system (VI-RADS): added value for management of bladder cancer patients [J]. Eur Urol, 2018, 74(3): 307-308. DOI: 10.1016/j.eururo.2018.06.017.
[38]
LAMBIN P, RIOS-VELAZQUEZ E, LEIJENAAR R, et al. Radiomics: extracting more information from medical images using advanced feature analysis[J]. Eur J Cancer, 2012, 48(4): 441-446. DOI: 10.1016/j.ejca.2011.11.036.
[39]
BERA K, BRAMAN N, GUPTA A, et al. Predicting cancer outcomes with radiomics and artificial intelligence in radiology[J]. Nat Rev Clin Oncol, 2022, 19(2): 132-146. DOI: 10.1038/s41571-021-00560-7.
[40]
CHOI S J, PARK K J, HEO C, et al. Radiomics-based model for predicting pathological complete response to neoadjuvant chemotherapy in muscle-invasive bladder cancer[J/OL]. Clin Radiol, 2021, 76(8): 627.e13-627.e21 [2025-06-24]. http://www.ncbi.nlm.nih.gov/pubmed/33762138. DOI: 10.1016/j.crad.2021.03.001.
[41]
KOZIKOWSKI M, SUAREZ-IBARROLA R, OSIECKI R, et al. Role of radiomics in the prediction of muscle-invasive bladder cancer: a systematic review and meta-analysis[J]. Eur Urol Focus, 2022, 8(3): 728-738. DOI: 10.1016/j.euf.2021.05.005.
[42]
DU P, WANG H J, SHI Y Q, et al. Prediction on the relapse of BC based on radiomics approach with multi-parametric MRI[J]. China Med Equip, 2018, 15(11): 39-43. DOI: 10.3969/j.issn.1672-8270.2018.11.011.
[43]
ZHANG S H, SONG M F, ZHAO Y S, et al. Radiomics nomogram for preoperative prediction of progression-free survival using diffusion-weighted imaging in patients with muscle-invasive bladder cancer[J/OL]. Eur J Radiol, 2020, 131: 109219 [2025-06-24]. http://www.ncbi.nlm.nih.gov/pubmed/32905953. DOI: 10.1016/j.ejrad.2020.109219.
[44]
ZHENG Z T, XU F J, GU Z R, et al. Combining multiparametric MRI radiomics signature with the vesical imaging-reporting and data system (VI-RADS) score to preoperatively differentiate muscle invasion of bladder cancer[J/OL]. Front Oncol, 2021, 11: 619893 [2025-06-24]. https://github.com/MuiseDestiny/zotero-style. DOI: 10.3389/fonc.2021.619893.
[45]
XU X P, WANG H J, GUO Y, et al. Study progress of noninvasive imaging and radiomics for decoding the phenotypes and recurrence risk of bladder cancer[J/OL]. Front Oncol, 2021, 11: 704039 [2025-06-24]. https://github.com/MuiseDestiny/zotero-style. DOI: 10.3389/fonc.2021.704039.
[46]
YANG G Q, BAI J J, HAO M, et al. Enhancing recurrence risk prediction for bladder cancer using multi-sequence MRI radiomics[J/OL]. Insights Imaging, 2024, 15(1): 88 [2025-06-24]. http://www.ncbi.nlm.nih.gov/pubmed/38526620. DOI: 10.1186/s13244-024-01662-3.
[47]
VENTE C, VOS P, HOSSEINZADEH M, et al. Deep learning regression for prostate cancer detection and grading in bi-parametric MRI[J]. IEEE Trans Biomed Eng, 2021, 68(2): 374-383. DOI: 10.1109/tbme.2020.2993528.
[48]
ROUVIÈRE O, JAOUEN T, BASEILHAC P, et al. Artificial intelligence algorithms aimed at characterizing or detecting prostate cancer on MRI: How accurate are they when tested on independent cohorts - A systematic review[J]. Diagn Interv Imaging, 2023, 104(5): 221-234. DOI: 10.1016/j.diii.2022.11.005.
[49]
MANSUR A, SALEEM Z, ELHAKIM T, et al. Role of artificial intelligence in risk prediction, prognostication, and therapy response assessment in colorectal cancer: current state and future directions[J/OL]. Front Oncol, 2023, 13: 1065402 [2025-06-24]. http://www.ncbi.nlm.nih.gov/pubmed/36761957. DOI: 10.3389/fonc.2023.1065402.
[50]
LUCAS M, JANSEN I, VAN LEEUWEN T G, et al. Deep learning-based recurrence prediction in patients with non-muscle-invasive bladder cancer[J]. Eur Urol Focus, 2022, 8(1): 165-172. DOI: 10.1016/j.euf.2020.12.008.
[51]
XU X P, WANG H J, DU P, et al. A predictive nomogram for individualized recurrence stratification of bladder cancer using multiparametric MRI and clinical risk factors[J]. J Magn Reson Imaging, 2019, 50(6): 1893-1904. DOI: 10.1002/jmri.26749.
[52]
HUANG H L, HUANG Y P, KAGGIE J D, et al. Multiparametric MRI-based deep learning radiomics model for assessing 5-year recurrence risk in non-muscle invasive bladder cancer[J]. J Magn Reson Imag, 2025, 61(3): 1442-1456. DOI: 10.1002/jmri.29574.
[53]
CAI L K, YANG X, YU J, et al. Deep learning on T2WI to predict the muscle-invasive bladder cancer: a multi-center clinical study[J/OL]. Sci Rep, 2025, 15: 9942 [2025-06-24]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11929795/. DOI: 10.1038/s41598-024-82909-3.
[54]
HASNAIN Z, MASON J, GILL K, et al. Machine learning models for predicting post-cystectomy recurrence and survival in bladder cancer patients[J/OL]. PLoS One, 2019, 14(2): e0210976 [2025-06-24]. http://www.ncbi.nlm.nih.gov/pubmed/30785915. DOI: 10.1371/journal.pone.0210976.
[55]
ABBAS S, SHAFIK R, SOOMRO N, et al. AI predicting recurrence in non-muscle-invasive bladder cancer: systematic review with study strengths and weaknesses[J/OL]. Front Oncol, 2025, 14: 1509362 [2025-06-24]. http://www.ncbi.nlm.nih.gov/pubmed/39839785. DOI: 10.3389/fonc.2024.1509362.
[56]
ZECH J R, BADGELEY M A, LIU M, et al. Variable generalization performance of a deep learning model to detect pneumonia in chest radiographs: A cross-sectional study[J/OL]. PLoS Med, 2018, 15(11): e1002683 [2025-06-24]. http://www.ncbi.nlm.nih.gov/pubmed/30399157. DOI: 10.1371/journal.pmed.1002683.

PREV Advances in DWI models for treatment response assessment in rectal cancer
NEXT Research progress in multiparametric MRI for evaluating extraprostatic extension of prostate cancer
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn