Share:
Share this content in WeChat
X
Review
Research progress in multiparametric MRI for evaluating extraprostatic extension of prostate cancer
ZHANG Biao  SUN Meiyu 

Cite this article as: ZHANG B, SUN M Y. Research progress in multiparametric MRI for evaluating extraprostatic extension of prostate cancer[J]. Chin J Magn Reson Imaging, 2025, 16(10): 208-214. DOI:10.12015/issn.1674-8034.2025.10.033.


[Abstract] Extraprostatic extension (EPE) of prostate cancer (PCa) is closely related to poor prognostic factors such as positive surgical margin, biochemical recurrence and distant metastasis after PCa surgery, which seriously affects the survival rate of PCa patients. Preoperative MRI evaluation of EPE is helpful to develop individualized surgical plans and improve the quality of life of patients. The multiparametric MRI (mpMRI) techniques recommended by prostate imaging reporting and data system (PI-RADS) include T2WI, dynamic contrast-enhanced (DCE), and diffusion-weighted imaging (DWI). At present, the review of mpMRI in the prediction of EPE mostly focuses on the discussion of imaging signs, and rarely elaborates from the perspective of technological application. This article reviews the technical applicationand research progress of T2WI, DCE and DWI techniques in the evaluation of EPE, systematically introduces the principles and imaging characteristics of these techniques, and discusses their diagnostic value, limitations and development directions in the evaluation of EPE, aiming to provide technical reference for the accurate evaluation of EPE in PCa, optimize MRI scanning scheme and imaging analysis methods for preoperative EPE prediction , and promote the individualized diagnosis and treatment of PCa.
[Keywords] prostate cancer;extraprostatic extension;magnetic resonance imaging;diffusion-weighted imaging;dynamic contrast-enhanced

ZHANG Biao   SUN Meiyu*  

Department of Radiology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China

Corresponding author: SUN M Y, E-mail: sunmy828@126.com

Conflicts of interest   None.

Received  2025-05-30
Accepted  2025-10-10
DOI: 10.12015/issn.1674-8034.2025.10.033
Cite this article as: ZHANG B, SUN M Y. Research progress in multiparametric MRI for evaluating extraprostatic extension of prostate cancer[J]. Chin J Magn Reson Imaging, 2025, 16(10): 208-214. DOI:10.12015/issn.1674-8034.2025.10.033.

[1]
SIEGEL R L, GIAQUINTO A N, JEMAL A. Cancer statistics, 2024[J]. CA Cancer J Clin, 2024, 74(1): 12-49. DOI: 10.3322/caac.21820.
[2]
ZHANG X, YANG L, LIU S, et al. Interpretation on the report of global cancer statistics 2022[J]. Chin J Oncol, 2024, 46(7): 710-721. DOI: 10.3760/cma.j.cn112152-20240416-00152.
[3]
LI M, HU M, JIANG L, et al. Trends in cancer incidence and potential associated factors in China[J/OL]. JAMA Netw Open, 2024, 7(10): e2440381 [2025-09-18]. https://pubmed.ncbi.nlm.nih.gov/39432306/. DOI: 10.1001/jamanetworkopen.2024.40381.
[4]
MOROIANU Ş L, BHATTACHARYA I, SEETHARAMAN A, et al. Computational detection of extraprostatic extension of prostate cancer on multiparametric MRI using deep learning[J/OL]. Cancers (Basel), 2022, 14(12): 2821 [2025-09-18]. https://pubmed.ncbi.nlm.nih.gov/35740487/. DOI: 10.3390/cancers14122821.
[5]
HE J, CHEN W Q, LI N, et al. China guideline for the screening and early detection of prostate cancer(2022, Beijing)[J]. Chin J Oncol, 2022, 44(1): 29-53. DOI: 10.3760/cma.j.cn112152-20211226-00975.
[6]
SHIEH A C, GULER E, OJILI V, et al. Extraprostatic extension in prostate cancer: primer for radiologists[J]. Abdom Radiol (NY), 2020, 45(12): 4040-4051. DOI: 10.1007/s00261-020-02555-x.
[7]
GUERRA A, FLOR-DE-LIMA B, FREIRE G, et al. Radiologic-pathologic correlation of prostatic cancer extracapsular extension (ECE)[J/OL]. Insights Imaging, 2023, 14(1): 88 [2025-09-18]. https://pubmed.ncbi.nlm.nih.gov/37191739/. DOI: 10.1186/s13244-023-01428-3.
[8]
CORNFORD P, VAN DEN BERGH R C N, BRIERS E, et al. EAU-EANM-ESTRO-ESUR-ISUP-SIOG guidelines on prostate cancer-2024 update. part I: screening, diagnosis, and local treatment with curative intent[J]. Eur Urol, 2024, 86(2): 148-163. DOI: 10.1016/j.eururo.2024.03.027.
[9]
VAN DER SLOT M A, REMMERS S, KWELDAM C F, et al. Biopsy prostate cancer perineural invasion and tumour load are associated with positive posterolateral margins at radical prostatectomy: implications for planning of nerve-sparing surgery[J]. Histopathology, 2023, 83(3): 348-356. DOI: 10.1111/his.14934.
[10]
LASCHENA L, MESSINA E, FLAMMIA R S, et al. What the urologist needs to know before radical prostatectomy: MRI effective support to pre-surgery planning[J]. Radiol Med, 2024, 129(7): 1048-1061. DOI: 10.1007/s11547-024-01831-w.
[11]
ZHU M L, GAO J H, HAN F, et al. Diagnostic performance of prediction models for extraprostatic extension in prostate cancer: a systematic review and meta-analysis[J/OL]. Insights Imaging, 2023, 14(1): 140 [2025-09-18]. https://pubmed.ncbi.nlm.nih.gov/37606802/. DOI: 10.1186/s13244-023-01486-7.
[12]
MOON H W, KIM D H, KIM J, et al. A preoperative scoring system for predicting the extraprostatic extension of prostate cancer following radical prostatectomy using magnetic resonance imaging and clinical factors[J]. Abdom Radiol (NY), 2024, 49(8): 2683-2692. DOI: 10.1007/s00261-024-04345-1.
[13]
DHIMAN A, KUMAR V, DAS C J. Quantitative magnetic resonance imaging in prostate cancer: a review of current technology[J]. World J Radiol, 2024, 16(10): 497-511. DOI: 10.4329/wjr.v16.i10.497.
[14]
BISCHOFF L M, KATEMANN C, ISAAK A, et al. T2 turbo spin echo with compressed sensing and propeller acquisition (sampling k-space by utilizing rotating blades) for fast and motion robust prostate MRI: comparison with conventional acquisition[J]. Invest Radiol, 2023, 58(3): 209-215. DOI: 10.1097/RLI.0000000000000923.
[15]
OLIVEIRA T, FERREIRA L A, MARTO C M, et al. The role of multiparametric MRI in the local staging of prostate cancer[J/OL]. Front Biosci (Elite Ed), 2023, 15(3): 21 [2025-09-18]. https://pubmed.ncbi.nlm.nih.gov/37743235/. DOI: 10.31083/j.fbe1503021.
[16]
LIN Y, BELUE M J, YILMAZ E C, et al. Deep learning-based image quality assessment: impact on detection accuracy of prostate cancer extraprostatic extension on MRI[J]. Abdom Radiol (NY), 2024, 49(8): 2891-2901. DOI: 10.1007/s00261-024-04468-5.
[17]
ITO K, CHIBA E, OYAMA-MANABE N, et al. Combining the tumor contact length and apparent diffusion coefficient better predicts extraprostatic extension of prostate cancer with capsular abutment: a 3 tesla MR imaging study[J]. Magn Reson Med Sci, 2022, 21(3): 477-484. DOI: 10.2463/mrms.mp.2020-0182.
[18]
DUAN H X, LV X C. A fast CS-based reconstruction model with total variation constraint for MRI enhancement in K-space domain[J/OL]. Comput Intell Neurosci, 2022, 2022: 9222958 [2025-09-18]. https://pubmed.ncbi.nlm.nih.gov/35845891/. DOI: 10.1155/2022/9222958.
[19]
ROSENKRANTZ A B, BENNETT G L, DOSHI A, et al. T2-weighted imaging of the prostate: Impact of the BLADE technique on image quality and tumor assessment[J]. Abdom Imaging, 2015, 40(3): 552-559. DOI: 10.1007/s00261-014-0225-7.
[20]
NGUYEN D, PALMQUIST S, HWANG K P, et al. T2-weighted imaging of rectal cancer using a 3D fast spin echo sequence with and without deep learning reconstruction: A reader study[J/OL]. J Appl Clin Med Phys, 2025, 26(5): e70031 [2025-09-18]. https://pubmed.ncbi.nlm.nih.gov/39976552/. DOI: 10.1002/acm2.70031.
[21]
LI S, FAN Z C, GUO J T, et al. Compressed sensing 3D T2WI radiomics model: improving diagnostic performance in muscle invasion of bladder cancer[J/OL]. BMC Med Imaging, 2024, 24(1): 148 [2025-09-18]. https://pubmed.ncbi.nlm.nih.gov/38886638/. DOI: 10.1186/s12880-024-01318-0.
[22]
TANAKA U, UENO Y, MORINAGA Y, et al. Value of three-dimensional T2-weighted turbo spin-echo imaging with tissue-specific variable refocusing flip angle for 3-T magnetic resonance imaging of prostate cancer: comparison with conventional two- and three-dimensional T2-weighted turbo spin-echo imaging[J]. Jpn J Radiol, 2017, 35(12): 707-717. DOI: 10.1007/s11604-017-0684-1.
[23]
CHOI M H, LEE Y J, JUNG S E, et al. High-resolution 3D T2-weighted SPACE sequence with compressed sensing for the prostate gland: diagnostic performance in comparison with conventional T2-weighted images[J]. Abdom Radiol (NY), 2023, 48(3): 1090-1099. DOI: 10.1007/s00261-022-03777-x.
[24]
JÄDERLING F, NYBERG T, ÖBERG M, et al. Accuracy in local staging of prostate cancer by adding a three-dimensional T2-weighted sequence with radial reconstructions in magnetic resonance imaging[J/OL]. Acta Radiol Open, 2018, 7(2): 2058460118754607 [2025-09-18]. https://pubmed.ncbi.nlm.nih.gov/29456872/. DOI: 10.1177/2058460118754607.
[25]
PARK J C, PARK K J, PARK M Y, et al. Fast T2-weighted imaging with deep learning-based reconstruction: evaluation of image quality and diagnostic performance in patients undergoing radical prostatectomy[J]. J Magn Reson Imaging, 2022, 55(6): 1735-1744. DOI: 10.1002/jmri.27992.
[26]
KIM D H, CHOI M H, LEE Y J, et al. Deep learning-accelerated T2WI of the prostate for transition zone lesion evaluation and extraprostatic extension assessment[J/OL]. Sci Rep, 2024, 14(1): 29249 [2025-09-18]. https://pubmed.ncbi.nlm.nih.gov/39587164/. DOI: 10.1038/s41598-024-79348-5.
[27]
KIM M, KIM S H, HONG S J, et al. Evaluation of extra-prostatic extension on deep learning-reconstructed high-resolution thin-slice T2-weighted images in patients with prostate cancer[J/OL]. Cancers (Basel), 2024, 16(2): 413 [2025-09-18]. https://pubmed.ncbi.nlm.nih.gov/38254901/. DOI: 10.3390/cancers16020413.
[28]
SHIRADKAR R, GHOSE S, MAHRAN A, et al. Prostate surface distension and tumor texture descriptors from pre-treatment MRI are associated with biochemical recurrence following radical prostatectomy: preliminary findings[J/OL]. Front Oncol, 2022, 12: 841801 [2025-09-18]. https://pubmed.ncbi.nlm.nih.gov/35669420/. DOI: 10.3389/fonc.2022.841801.
[29]
LI X, HUANG W, HOLMES J H. Dynamic contrast-enhanced (DCE) MRI[J]. Magn Reson Imaging Clin N Am, 2024, 32(1): 47-61. DOI: 10.1016/j.mric.2023.09.001.
[30]
BELUE M J, YILMAZ E C, DARYANANI A, et al. Current status of biparametric MRI in prostate cancer diagnosis: literature analysis[J/OL]. Life (Basel), 2022, 12(6): 804 [2025-09-18]. https://pubmed.ncbi.nlm.nih.gov/35743835/. DOI: 10.3390/life12060804.
[31]
JÓŹWIAK R, SOBECKI P, LORENC T. Intraobserver and interobserver agreement between six radiologists describing mpMRI features of prostate cancer using a PI-RADS 2.1 structured reporting scheme[J/OL]. Life (Basel), 2023, 13(2): 580 [2025-09-18]. https://pubmed.ncbi.nlm.nih.gov/36836937/. DOI: 10.3390/life13020580.
[32]
ASFUROĞLU U, ASFUROĞLU B B, ÖZER H, et al. A comparative analysis of techniques for measuring tumor contact length in predicting extraprostatic extension[J/OL]. Eur J Radiol, 2024, 181: 111753 [2025-09-18]. https://pubmed.ncbi.nlm.nih.gov/39357285/. DOI: 10.1016/j.ejrad.2024.111753.
[33]
SRIDHAR S, ABOUELFETOUH Z, CODREANU I, et al. The role of dynamic contrast enhanced magnetic resonance imaging in evaluating prostate adenocarcinoma: a partially-blinded retrospective study of a prostatectomy patient cohort with whole gland histopathology correlation and application of PI-RADS or TNM staging[J]. Prostate, 2025, 85(5): 413-423. DOI: 10.1002/pros.24843.
[34]
WIMPER Y, FÜTTERER J J, BOMERS J G R. MR imaging in real time guiding of therapies in prostate cancer[J/OL]. Life (Basel), 2022, 12(2): 302 [2025-09-18]. https://pubmed.ncbi.nlm.nih.gov/35207589/. DOI: 10.3390/life12020302.
[35]
CAGLIC I, SUSHENTSEV N, COLARIETI A, et al. Value of the capsular enhancement sign on dynamic contrast-enhanced prostate multiparametric MRI for the detection of extracapsular extension[J/OL]. Eur J Radiol, 2022, 150: 110275 [2025-09-18]. https://pubmed.ncbi.nlm.nih.gov/35358786/. DOI: 10.1016/j.ejrad.2022.110275.
[36]
LI W, SUN Y, WU Y M, et al. The quantitative assessment of using multiparametric MRI for prediction of extraprostatic extension in patients undergoing radical prostatectomy: a systematic review and meta-analysis[J/OL]. Front Oncol, 2021, 11: 771864 [2025-09-18]. https://pubmed.ncbi.nlm.nih.gov/34881183/. DOI: 10.3389/fonc.2021.771864.
[37]
ONAY A, BAKıR B. The relationship between amount of extra-prostatic extension and length of capsular contact: performances from MR images and radical prostatectomy specimens[J]. Turk J Med Sci, 2021, 51(4): 1940-1952. DOI: 10.3906/sag-2012-55.
[38]
EURBOONYANUN K, PISUCHPEN N, O'SHEA A, et al. The absolute tumor-capsule contact length in the diagnosis of extraprostatic extension of prostate cancer[J]. Abdom Radiol (NY), 2021, 46(8): 4014-4024. DOI: 10.1007/s00261-021-03063-2.
[39]
ONAY A, VURAL M, ARMUTLU A, et al. Evaluation of the most optimal multiparametric magnetic resonance imaging sequence for determining pathological length of capsular contact[J]. Eur J Radiol, 2019, 112: 192-199. DOI: 10.1016/j.ejrad.2019.01.020.
[40]
WANG A, ZHAO S Q, ZHANG M Y, et al. Research progress of preoperative magnetic resonance imaging techniques in axillary lymph node metastasis of breast cancer[J]. Chin J Magn Reson Imag, 2024, 15(9): 183-188. DOI: 10.12015/issn.1674-8034.2024.09.032.
[41]
LI J, ZOU C X, PAN N N, et al. A study on the histogram of DCE-MRI pharmacokinetic parameters for predicting endocrine therapy response in prostate cancer[J]. Chin J Magn Reson Imag, 2025, 16(4): 70-80. DOI: 10.12015/issn.1674-8034.2025.04.011.
[42]
KIM W, KIM C K, PARK J J, et al. Evaluation of extracapsular extension in prostate cancer using qualitative and quantitative multiparametric MRI[J]. J Magn Reson Imaging, 2017, 45(6): 1760-1770. DOI: 10.1002/jmri.25515.
[43]
YAN X F, CHEN J M, HUANG H B, et al. Qualitative and quantitative evaluation of extracapsular extension in prostate cancer using multi-parametric MRI[J]. J Wannan Med Coll, 2022, 41(6): 577-580. DOI: 10.3969/j.issn.1002-0217.2022.06.018.
[44]
ROUVIÈRE O, DAGONNEAU T, CROS F, et al. Diagnostic value and relative weight of sequence-specific magnetic resonance features in characterizing clinically significant prostate cancers[J/OL]. PLoS One, 2017, 12(6): e0178901 [2025-09-18]. https://pubmed.ncbi.nlm.nih.gov/28599001/. DOI: 10.1371/journal.pone.0178901.
[45]
CHRISTOPHE C, MONTAGNE S, BOURRELIER S, et al. Prostate cancer local staging using biparametric MRI: assessment and comparison with multiparametric MRI[J/OL]. Eur J Radiol, 2020, 132: 109350 [2025-09-18]. https://pubmed.ncbi.nlm.nih.gov/33080549/. DOI: 10.1016/j.ejrad.2020.109350.
[46]
CARUSO M, STANZIONE A, PRINSTER A, et al. Role of advanced imaging techniques in the evaluation of oncological therapies in patients with colorectal liver metastases[J]. World J Gastroenterol, 2023, 29(3): 521-535. DOI: 10.3748/wjg.v29.i3.521.
[47]
CHEN C, RAYMOND C, SPEIER W, et al. Synthesizing MR image contrast enhancement using 3D high-resolution ConvNets[J]. IEEE Trans Biomed Eng, 2023, 70(2): 401-412. DOI: 10.1109/TBME.2022.3192309.
[48]
DEFORCHE M, LEFEBVRE Y, DIAMAND R, et al. Improved diagnostic accuracy of readout-segmented echo-planar imaging for peripheral zone clinically significant prostate cancer: a retrospective 3T MRI study[J/OL]. Sci Rep, 2024, 14(1): 3299 [2025-09-18]. https://pubmed.ncbi.nlm.nih.gov/38332131/. DOI: 10.1038/s41598-024-53898-0.
[49]
PURYSKO A S, BARONI R H, GIGANTI F, et al. PI-RADS version 2.1: a critical review, from the AJR special series on radiology reporting and data systems[J]. AJR Am J Roentgenol, 2021, 216(1): 20-32. DOI: 10.2214/AJR.20.24495.
[50]
KALLIS K, CONLIN C C, ZHONG A Y, et al. Comparison of synthesized and acquired high b-value diffusion-weighted MRI for detection of prostate cancer[J/OL]. Cancer Imaging, 2024, 24(1): 89 [2025-09-18]. https://pubmed.ncbi.nlm.nih.gov/38972972/. DOI: 10.1186/s40644-024-00723-6.
[51]
COLVIN S D, CASON D E, GALGANO S J, et al. Fusion of high B-value diffusion-weighted and T2-weighted MR images increases sensitivity for identification of extraprostatic disease in prostate cancer[J]. Clin Imaging, 2020, 68: 202-209. DOI: 10.1016/j.clinimag.2020.08.022.
[52]
KIDO A, TAMADA T, SONE T, et al. Incremental value of high b value diffusion-weighted magnetic resonance imaging at 3-T for prediction of extracapsular extension in patients with prostate cancer: preliminary experience[J]. Radiol Med, 2017, 122(3): 228-238. DOI: 10.1007/s11547-016-0712-8.
[53]
SILVA FILHO A C DA, ROCHA T O, ELIAS J, et al. Value of adding the apparent diffusion coefficient to capsular contact for the prediction of extracapsular extension in prostate cancer[J]. Radiol Bras, 2020, 53(6): 381-389. DOI: 10.1590/0100-3984.2019.0123.
[54]
BERTELLI E, VIZZI M, MARZI C, et al. Biparametric vs. multiparametric MRI in the detection of cancer in transperineal targeted-biopsy-proven peripheral prostate cancer lesions classified as PI-RADS score 3 or 3+1: the added value of ADC quantification[J/OL]. Diagnostics (Basel), 2024, 14(15): 1608 [2025-09-18]. https://pubmed.ncbi.nlm.nih.gov/39125483/. DOI: 10.3390/diagnostics14151608.
[55]
XIAO V G, KRESNANTO J, MOSES D A, et al. Quantitative MRI in the local staging of prostate cancer: a systematic review and meta-analysis[J]. J Magn Reson Imaging, 2024, 59(1): 255-296. DOI: 10.1002/jmri.28742.
[56]
LIM C, FLOOD T A, HAKIM S W, et al. Evaluation of apparent diffusion coefficient and MR volumetry as independent associative factors for extra-prostatic extension (EPE) in prostatic carcinoma[J]. J Magn Reson Imaging, 2016, 43(3): 726-736. DOI: 10.1002/jmri.25033.
[57]
ZHANG S L, CHEN F M, GAO X. Application of nomogram model based on ADC histogram features in predicting clinically significant prostate cancer in transitional zone[J]. Chin J Magn Reson Imag, 2025, 16(4): 87-92. DOI: 10.12015/issn.1674-8034.2025.04.013.
[58]
LIU W, LIU X H, TANG W, et al. Histogram analysis of stretched-exponential and monoexponential diffusion-weighted imaging models for distinguishing low and intermediate/high gleason scores in prostate carcinoma[J]. J Magn Reson Imaging, 2018, 48(2): 491-498. DOI: 10.1002/jmri.25958.
[59]
CHEN Y L, MENG T B, CAO W X, et al. Histogram analysis of MR quantitative parameters: are they correlated with prognostic factors in prostate cancer [J]. Abdom Radiol (NY), 2024, 49(5): 1534-1544. DOI: 10.1007/s00261-024-04227-6.
[60]
XU H H, LIU B C, DING X H, et al. Added value of apparent diffusion coefficient histogram in predicting extraprostatic extension of prostate cancer[J]. Chin J Med Imag, 2024, 32(9): 938-944. DOI: 10.3969/j.issn.1005-5185.2024.09.014.
[61]
KRISHNA S, LIM C S, MCINNES M D F, et al. Evaluation of MRI for diagnosis of extraprostatic extension in prostate cancer[J]. J Magn Reson Imaging, 2018, 47(1): 176-185. DOI: 10.1002/jmri.25729.
[62]
ZHU R, WANG G S, ZHANG Y, et al. Research progress of quantitative functional magnetic resonance imaging in prostate cancer[J]. Chin J Gen Pract, 2024, 22(12): 2104-2107. DOI: 10.16766/j.cnki.issn.1674-4152.003808.
[63]
LI M S, LI W Z. Clinical application and progress of quantitative functional magnetic resonance imaging in prostate cancer[J]. J Cent South Univ Med Sci, 2021, 46(4): 414-420. DOI: 10.11817/j.issn.1672-7347.2021.200316.
[64]
CAI C L, ZHAO J G. Research progress of DWI new technology in diagnosis and treatment of prostate cancer[J]. J Clin Radiol, 2023, 42(6): 1053-1057. DOI: 10.13437/j.cnki.jcr.2023.06.020.

PREV Research progress in predicting postoperative recurrence of bladder cancer using magnetic resonance imaging
NEXT Research progress of MRI technique in evaluating placental insufficiency
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn