Share:
Share this content in WeChat
X
Review
Research progress of MRI technique in evaluating placental insufficiency
WANG Hong  WANG Yingchao  WEI Ming 

Cite this article as: WANG H, WANG Y C, WEI M. Research progress of MRI technique in evaluating placental insufficiency[J]. Chin J Magn Reson Imaging, 2025, 16(10): 215-221, 228. DOI:10.12015/issn.1674-8034.2025.10.034.


[Abstract] Placental insufficiency can lead to preeclampsia, fetal growth restriction and preterm birth, and it is difficult to detect before the onset of clinical symptoms. Currently, Doppler ultrasound has a relatively low sensitivity for its diagnosis. However, with the continuous development of new MRI techniques such as diffusion-weighted imaging, intravoxel incoherent motion diffusion-weighted imaging, diffusion tensor imaging, arterial spin labeling, arterial spin labeling with flow-sensitive alternating inversion recovery, blood oxygenation level dependent imaging and rapid functional MRI based on artificial intelligence, it is possible to assess the microstructure, metabolism and perfusion of the placenta. This article systematically reviews the potential advantages and disadvantages of new MRI techniques in evaluating the remodeling of uterine spiral arteries, quantifying placental blood flow perfusion, and automatically quantifying the status of mature placentas that deviate from normal dynamics and closely related pregnancy complications, and discusses future research directions. The aim is to provide a reliable basis for early, rapid and reliable prediction of placental insufficiency in clinical practice, and at the same time provide new ideas for management and possible intervention measures.
[Keywords] placental insufficiency;magnetic resonance imaging;diffusion-weighted imaging;intravoxel incoherent motion diffusion-weighted imaging;blood oxygen level dependent;diffusion tensor imaging;arterial spin labeling with flow-sensitive alternating inversion recovery;artificial intelligence

WANG Hong1, 2   WANG Yingchao1, 2*   WEI Ming1, 2  

1 Department of Medical Imaging, Zhangye People's Hospital Affiliated to Hexi University, Zhangye 734000, China

2 Institute of Medical Imaging, Hexi University, Zhangye 734000, China

Corresponding author: WANG Y C, E-mail: 821497422@qq.com

Conflicts of interest   None.

Received  2024-08-17
Accepted  2025-09-10
DOI: 10.12015/issn.1674-8034.2025.10.034
Cite this article as: WANG H, WANG Y C, WEI M. Research progress of MRI technique in evaluating placental insufficiency[J]. Chin J Magn Reson Imaging, 2025, 16(10): 215-221, 228. DOI:10.12015/issn.1674-8034.2025.10.034.

[1]
VAN KAMMEN C M, VAN WOUDENBERG S J, SCHIFFELERS R, et al. Nanomedicines: an approach to treat placental insufficiency and the current challenges[J]. J Control Release, 2023, 360: 57-68. DOI: 10.1016/j.jconrel.2023.06.003.
[2]
DALL'ASTA A, MELITO C, MORGANELLI G, et al. Determinants of placental insufficiency in fetal growth restriction[J]. Ultrasound Obstet & Gyne, 2023, 61(2): 152-157. DOI: 10.1002/uog.26111.
[3]
DARWISH F M AL, MEIJERINK L, COOLEN B F, et al. From molecules to imaging: assessment of placental hypoxia biomarkers in placental insufficiency syndromes[J/OL]. Cells, 2023, 12(16): 2080 [2024-08-17]. https://pubmed.ncbi.nlm.nih.gov/37626890/. DOI: 10.3390/cells12162080.
[4]
HAPPE S K, YULE C S, SPONG C Y, et al. Predicting placenta accreta spectrum[J]. J Ultrasound Med, 2021, 40(8): 1523-1532. DOI: 10.1002/jum.15530.
[5]
DE ASIS-CRUZ J, ANDESCAVAGE N, LIMPEROPOULOS C. Adverse prenatal exposures and fetal brain development: insights from advanced fetal magnetic resonance imaging[J]. Biol Psychiatry Cogn Neurosci Neuroimaging, 2022, 7(5): 480-490. DOI: 10.1016/j.bpsc.2021.11.009.
[6]
POWERS A M, WHITE C, NEUBERGER I, et al. Fetal MRI neuroradiology: indications[J]. Clin Perinatol, 2022, 49(3): 573-586. DOI: 10.1016/j.clp.2022.05.001.
[7]
HERRERA C L, BYRNE J J, CLARK H R, et al. Use of fetal magnetic resonance imaging after sonographic identification of major structural anomalies[J]. J Ultrasound Med, 2020, 39(10): 2053-2058. DOI: 10.1002/jum.15313.
[8]
COLLERAN G C, KYNCL M, GAREL C, et al. Fetal magnetic resonance imaging at 3Tesla: the European experience[J]. Pediatr Radiol, 2022, 52(5): 959-970. DOI: 10.1007/s00247-021-05267-6.
[9]
ARTHUIS C, MILLISCHER A E, BUSSIÈRES L, et al. MRI based morphological examination of the placenta[J]. Placenta, 2021, 115: 20-26. DOI: 10.1016/j.placenta.2021.08.056.
[10]
PRAYER D, MALINGER G, DE CATTE L, et al. ISUOG practice guidelines (updated): performance of fetal magnetic resonance imaging[J]. Ultrasound Obstet & Gyne, 2023, 61(2): 278-287. DOI: 10.1002/uog.26129.
[11]
PARTRIDGE S C. Emerging techniques bring diffusion-weighted imaging of the breast into focus[J]. Radiology, 2020, 297(2): 313-315. DOI: 10.1148/radiol.2020203044.
[12]
GUNDOGDU B, PITTMAN J M, CHATTERJEE A, et al. Directional and inter-acquisition variability in diffusion-weighted imaging and editing for restricted diffusion[J]. Magn Reson Med, 2022, 88(5): 2298-2310. DOI: 10.1002/mrm.29385.
[13]
CORROENNE R, ARTHUIS C, KASPRIAN G, et al. Diffusion tensor imaging of fetal brain: principles, potential and limitations of promising technique[J]. Ultrasound Obstet & Gyne, 2022, 60(4): 470-476. DOI: 10.1002/uog.24935.
[14]
MOLTU S J, NORDVIK T, ROSSHOLT M E, et al. Arachidonic and docosahexaenoic acid supplementation and brain maturation in preterm infants; a double blind RCT[J]. Clin Nutr, 2024, 43(1): 176-186. DOI: 10.1016/j.clnu.2023.11.037.
[15]
ERCOLANI G, CAPUANI S, ANTONELLI A, et al. IntraVoxel Incoherent Motion (IVIM) MRI of fetal lung and kidney: Can the perfusion fraction be a marker of normal pulmonary and renal maturation?[J/OL]. Eur J Radiol, 2021, 139: 109726 [2024-08-17]. https://pubmed.ncbi.nlm.nih.gov/33895624/. DOI: 10.1016/j.ejrad.2021.109726.
[16]
GRIFFITH A M, WOODWARD P J, KENNEDY A M. Troubleshooting tips for diagnosing complex fetal genitourinary malformations[J/OL]. Radiographics, 2024, 44(1): e230084 [2024-08-17]. https://pubmed.ncbi.nlm.nih.gov/38127660/. DOI: 10.1148/rg.230084.
[17]
LI H, LU T, LI M, et al. Differentiation of placenta percreta through MRI features and diffusion-weighted magnetic resonance imaging[J/OL]. Insights Imaging, 2023, 14(1): 93 [2024-08-17]. https://pubmed.ncbi.nlm.nih.gov/37222836/. DOI: 10.1186/s13244-023-01448-z.
[18]
NOWAKOWSKA B A, PANKIEWICZ K, NOWACKA U, et al. Genetic background of fetal growth restriction[J/OL]. Int J Mol Sci, 2021, 23(1): 36 [2024-08-17]. https://pubmed.ncbi.nlm.nih.gov/35008459/. DOI: 10.3390/ijms23010036.
[19]
ANDESCAVAGE N, YOU W, JACOBS M, et al. Exploring in vivo placental microstructure in healthy and growth-restricted pregnancies through diffusion-weighted magnetic resonance imaging[J]. Placenta, 2020, 93: 113-118. DOI: 10.1016/j.placenta.2020.03.004.
[20]
HE J S, CHEN Z, CHEN C L, et al. Differences in placental oxygenation and perfusion status between fetal growth-restricted and small-for-gestational-age pregnancies: a functional magnetic resonance imaging study[J]. Eur Radiol, 2023, 33(3): 1729-1736. DOI: 10.1007/s00330-022-09185-5.
[21]
SLATOR P J, HUTTER J, PALOMBO M, et al. Combined diffusion-relaxometry MRI to identify dysfunction in the human placenta[J]. Magn Reson Med, 2019, 82(1): 95-106. DOI: 10.1002/mrm.27733.
[22]
SLATOR P J, HUTTER J, MCCABE L, et al. Placenta microstructure and microcirculation imaging with diffusion MRI[J]. Magn Reson Med, 2018, 80(2): 756-766. DOI: 10.1002/mrm.27036.
[23]
GÖRKEM S B, COŞKUN A, EŞLIK M, et al. Diffusion-weighted imaging of placenta in intrauterine growth restriction with worsening Doppler US findings[J]. Diagn Interv Radiol, 2019, 25(4): 280-284. DOI: 10.5152/dir.2019.18358.
[24]
LI J T, LI W J, NIU J L, et al. Intravoxel incoherent motion diffusion-weighted MRI of infiltrated marrow for predicting overall survival in newly diagnosed acute myeloid leukemia[J]. Radiology, 2020, 295(1): 155-161. DOI: 10.1148/radiol.2020191693.
[25]
WÁNG Y X J. A reduction of perfusion can lead to an artificial elevation of slow diffusion measure: examples in acute brain ischemia MRI intravoxel incoherent motion studies[J/OL]. Ann Transl Med, 2021, 9(10): 895 [2024-08-17]. https://pubmed.ncbi.nlm.nih.gov/34164529/. DOI: 10.21037/atm-21-1468.
[26]
LEÓN R L, BROWN B P, PERSOHN S A, et al. Intravoxel incoherent motion MR imaging analysis for diagnosis of placenta accrete spectrum disorders: a pilot feasibility study[J]. Magn Reson Imaging, 2021, 80: 26-32. DOI: 10.1016/j.mri.2021.03.007.
[27]
LU T, SONG B, PU H, et al. Prognosticators of intravoxel incoherent motion (IVIM) MRI for adverse maternal and neonatal clinical outcomes in patients with placenta accreta spectrum disorders[J]. Transl Androl Urol, 2020, 9(2): 258-266. DOI: 10.21037/tau.2019.12.27.
[28]
JAKAB A, TUURA R L, KOTTKE R, et al. Microvascular perfusion of the placenta, developing fetal liver, and lungs assessed with intravoxel incoherent motion imaging[J]. J Magn Reson Imaging, 2018, 48(1): 214-225. DOI: 10.1002/jmri.25933.
[29]
DENG J, CAO Y W, LU Y, et al. Value of placental virtual magnetic resonance elastography and intravoxel incoherent motion-based diffusion and perfusion in predicting adverse outcomes of small-for-gestational-age infants[J/OL]. Insights Imaging, 2023, 14(1): 153 [2024-08-17]. https://pubmed.ncbi.nlm.nih.gov/37741945/. DOI: 10.1186/s13244-023-01503-9.
[30]
SOHLBERG S, MULIC-LUTVICA A, LINDGREN P, et al. Placental perfusion in normal pregnancy and early and late preeclampsia: a magnetic resonance imaging study[J]. Placenta, 2014, 35(3): 202-206. DOI: 10.1016/j.placenta.2014.01.008.
[31]
SHI H, QUAN X Y, LIANG W, et al. Evaluation of placental perfusion based on intravoxel incoherent motion diffusion weighted imaging (IVIM-DWI) and its predictive value for late-onset fetal growth restriction[J]. Geburtshilfe Frauenheilkd, 2019, 79(4): 396-401. DOI: 10.1055/a-0717-5275.
[32]
MELBOURNE A, AUGHWANE R, SOKOLSKA M, et al. Separating fetal and maternal placenta circulations using multiparametric MRI[J]. Magn Reson Med, 2019, 81(1): 350-361. DOI: 10.1002/mrm.27406.
[33]
HE J S, CHEN Z, CHEN C L, et al. Comparative study of placental T2* and intravoxel incoherent motion in the prediction of fetal growth restriction[J]. Placenta, 2021, 111: 47-53. DOI: 10.1016/j.placenta.2021.06.005.
[34]
HE J S, CHEN C L, XU L Q, et al. Diffusion-derived vessel density computed from a simplified intravoxel incoherent motion imaging protocol in pregnancies complicated by early preeclampsia: a novel biomarker of placental dysfunction[J]. Hypertension, 2023, 80(8): 1658-1667. DOI: 10.1161/HYPERTENSIONAHA.122.20311.
[35]
HEMPEL J M, BRENDLE C, ADIB S D, et al. Glioma-specific diffusion signature in diffusion kurtosis imaging[J/OL]. J Clin Med, 2021, 10(11): 2325 [2024-08-17]. https://pubmed.ncbi.nlm.nih.gov/34073442/. DOI: 10.3390/jcm10112325.
[36]
GRANATA V, FUSCO R, BELLI A, et al. Diffusion weighted imaging and diffusion kurtosis imaging in abdominal oncological setting: why and when[J/OL]. Infect Agent Cancer, 2022, 17(1): 25 [2024-08-17]. https://pubmed.ncbi.nlm.nih.gov/35681237/. DOI: 10.1186/s13027-022-00441-3.
[37]
GAO A K, ZHANG H T, YAN X, et al. Whole-tumor histogram analysis of multiple diffusion metrics for glioma genotyping[J/OL]. Radiology, 2022, 302(3): E16 [2024-08-17]. https://pubmed.ncbi.nlm.nih.gov/34874198/. DOI: 10.1148/radiol.219034.
[38]
KANG H S, KIM J Y, KIM J J, et al. Diffusion kurtosis MR imaging of invasive breast cancer: correlations with prognostic factors and molecular subtypes[J]. J Magn Reson Imaging, 2022, 56(1): 110-120. DOI: 10.1002/jmri.27999.
[39]
WANG M D, PERUCHO J A U, CHAN Q, et al. Diffusion kurtosis imaging in the assessment of cervical carcinoma[J/OL]. Acad Radiol, 2020, 27(5): e94-e101 [2024-08-17]. https://pubmed.ncbi.nlm.nih.gov/31324577/. DOI: 10.1016/j.acra.2019.06.022.
[40]
SHERIDAN M A, FERNANDO R C, GARDNER L, et al. Establishment and differentiation of long-term trophoblast organoid cultures from the human placenta[J]. Nat Protoc, 2020, 15(10): 3441-3463. DOI: 10.1038/s41596-020-0381-x.
[41]
LU T, LI M, WANG Y S, et al. Standard diffusion-weighted, diffusion kurtosis and intravoxel incoherent motion in differentiating invasive placentas[J]. Arch Gynecol Obstet, 2024, 309(2): 503-514. DOI: 10.1007/s00404-023-06947-4.
[42]
LEÓN R L, LI K T, BROWN B P. A retrospective segmentation analysis of placental volume by magnetic resonance imaging from first trimester to term gestation[J]. Pediatr Radiol, 2018, 48(13): 1936-1944. DOI: 10.1007/s00247-018-4213-x.
[43]
LU T, WANG Y S, GUO A W, et al. Standard diffusion-weighted, diffusion kurtosis and intravoxel incoherent motion MR imaging of the whole placenta: a pilot study of volumetric analysis[J/OL]. Ann Transl Med, 2022, 10(6): 269 [2024-08-17]. https://pubmed.ncbi.nlm.nih.gov/35434012/. DOI: 10.21037/atm-22-1037.
[44]
PODWALSKI P, SZCZYGIEŁ K, TYBURSKI E, et al. Magnetic resonance diffusion tensor imaging in psychiatry: a narrative review of its potential role in diagnosis[J]. Pharmacol Rep, 2021, 73(1): 43-56. DOI: 10.1007/s43440-020-00177-0.
[45]
VOTAVA-SMITH J K, GAESSER J, HARBISON A L, et al. Clinical factors associated with microstructural connectome related brain dysmaturation in term neonates with congenital heart disease[J/OL]. Front Neurosci, 2022, 16: 952355 [2024-08-17]. https://pubmed.ncbi.nlm.nih.gov/36466162/. DOI: 10.3389/fnins.2022.952355.
[46]
YAN G H, LIAO Y H, LI K, et al. Diffusion MRI based myometrium tractography for detection of placenta accreta spectrum disorder[J]. J Magn Reson Imaging, 2022, 55(1): 255-264. DOI: 10.1002/jmri.27794.
[47]
BAUD O, BERKANE N. Hormonal changes associated with intra-uterine growth restriction: impact on the developing brain and future neurodevelopment[J/OL]. Front Endocrinol (Lausanne), 2019, 10: 179 [2024-08-17]. https://pubmed.ncbi.nlm.nih.gov/30972026/. DOI: 10.3389/fendo.2019.00179.
[48]
CORROENNE R, GREVENT D, MAHALLATI H, et al. Diffusion tensor imaging of fetal spinal cord: feasibility and gestational-age-related changes[J]. Ultrasound Obstet & Gyne, 2023, 62(2): 241-247. DOI: 10.1002/uog.26208.
[49]
ALMEIDA A G. Myocardial oxygenation assessment at myocardial blood oxygen level-dependent MRI: a fresh look at an old promise[J]. Radiology, 2020, 295(1): 94-95. DOI: 10.1148/radiol.2020200163.
[50]
SUN L Q, MACGOWAN C K, SLED J G, et al. Reduced fetal cerebral oxygen consumption is associated with smaller brain size in fetuses with congenital heart disease[J]. Circulation, 2015, 131(15): 1313-1323. DOI: 10.1161/CIRCULATIONAHA.114.013051.
[51]
LO J O, SCHABEL M C, ROBERTS V H J, et al. Effects of early daily alcohol exposure on placental function and fetal growth in a Rhesus macaque model[J/OL]. Am J Obstet Gynecol, 2022, 226(1): 130.e1-130130.e11 [2024-08-17]. https://pubmed.ncbi.nlm.nih.gov/34364844/. DOI: 10.1016/j.ajog.2021.07.028.
[52]
YOU W, ANDESCAVAGE N N, KAPSE K, et al. Hemodynamic responses of the placenta and brain to maternal hyperoxia in fetuses with congenital heart disease by using blood oxygen-level dependent MRI[J]. Radiology, 2020, 294(1): 141-148. DOI: 10.1148/radiol.2019190751.
[53]
GINOSAR Y, GIELCHINSKY Y, NACHMANSSON N, et al. BOLD-MRI demonstrates acute placental and fetal organ hypoperfusion with fetal brain sparing during hypercapnia[J]. Placenta, 2018, 63: 53-60. DOI: 10.1016/j.placenta.2017.09.005.
[54]
SHAPIRO J, GINOSAR Y, GIELCHINSKY Y, et al. BOLD-MRI demonstrates acute placental and fetal organ hypoperfusion with fetal brain sparing in response to phenylephrine but not ephedrine[J]. Placenta, 2020, 90: 52-57. DOI: 10.1016/j.placenta.2019.11.006.
[55]
STROGANOV S, HARRIS T, FELLUS-ALYAGOR L, et al. The differential regulation of placenta trophoblast bisphosphoglycerate mutase in fetal growth restriction: preclinical study in mice and observational histological study of human placenta[J/OL]. eLife, 2024, 13: e82631 [2024-08-17]. https://pubmed.ncbi.nlm.nih.gov/38314803/. DOI: 10.7554/eLife.82631.
[56]
KNUDSEN L V, SHELDRICK A J, VAFAEE M S, et al. Diversifying autism neuroimaging research: an arterial spin labeling review[J]. Autism, 2023, 27(5): 1190-1203. DOI: 10.1177/13623613221137230.
[57]
DELOISON B, SALOMON L J, QUIBEL T, et al. Non-invasive assessment of placental perfusion in vivo using arterial spin labeling (ASL) MRI: A preclinical study in rats[J]. Placenta, 2019, 77: 39-45. DOI: 10.1016/j.placenta.2019.01.019.
[58]
GOTTSCHALK M. Look-Locker FAIR TrueFISP for arterial spin labelling on mouse at 9.4 T[J/OL]. NMR Biomed, 2020, 33(3): e4191 [2024-08-17]. https://pubmed.ncbi.nlm.nih.gov/31829485/. DOI: 10.1002/nbm.4191.
[59]
HERRERA C L, WANG Y M, UDAYAKUMAR D, et al. Longitudinal assessment of placental perfusion in normal and hypertensive pregnancies using pseudo-continuous arterial spin-labeled MRI: preliminary experience[J]. Eur Radiol, 2023, 33(12): 9223-9232. DOI: 10.1007/s00330-023-09945-x.
[60]
HARTEVELD A A, HUTTER J, FRANKLIN S L, et al. Systematic evaluation of velocity-selective arterial spin labeling settings for placental perfusion measurement[J]. Magn Reson Med, 2020, 84(4): 1828-1843. DOI: 10.1002/mrm.28240.
[61]
SEITER D, CHEN R M, LUDWIG K D, et al. Velocity-selective arterial spin labeling perfusion measurements in 2nd trimester human placenta with varying BMI[J]. Placenta, 2024, 150: 72-79. DOI: 10.1016/j.placenta.2024.03.012.
[62]
WANG H C, FU T F, DU Y Q, et al. Scientific discovery in the age of artificial intelligence[J]. Nature, 2023, 620(7972): 47-60. DOI: 10.1038/s41586-023-06221-2.
[63]
THEODOSIOU A A, READ R C. Artificial intelligence, machine learning and deep learning: Potential resources for the infection clinician[J]. J Infect, 2023, 87(4): 287-294. DOI: 10.1016/j.jinf.2023.07.006.
[64]
BERA K, BRAMAN N, GUPTA A, et al. Predicting cancer outcomes with radiomics and artificial intelligence in radiology[J]. Nat Rev Clin Oncol, 2022, 19(2): 132-146. DOI: 10.1038/s41571-021-00560-7.
[65]
NARDONE V, REGINELLI A, RUBINI D, et al. Delta radiomics: an updated systematic review[J]. Radiol Med, 2024, 129(8): 1197-1214. DOI: 10.1007/s11547-024-01853-4.
[66]
VAN DER VELDEN B H M, KUIJF H J, GILHUIJS K G A, et al. Explainable artificial intelligence (XAI) in deep learning-based medical image analysis[J/OL]. Med Image Anal, 2022, 79: 102470 [2024-08-17]. https://pubmed.ncbi.nlm.nih.gov/35576821/. DOI: 10.1016/j.media.2022.102470.
[67]
KAJDY A, MODZELEWSKI J, CYMBALUK-PŁOSKA A, et al. Molecular pathways of cellular senescence and placental aging in late fetal growth restriction and stillbirth[J/OL]. Int J Mol Sci, 2021, 22(8): 4186 [2024-08-17]. https://pubmed.ncbi.nlm.nih.gov/33919502/. DOI: 10.3390/ijms22084186.
[68]
PEREZ-RAMIREZ C A, NAKANO H, LAW R C, et al. Atlas of fetal metabolism during mid-to-late gestation and diabetic pregnancy[J/OL]. Cell, 2024, 187(1): 204-215.e14 [2024-08-17]. https://pubmed.ncbi.nlm.nih.gov/38070508/. DOI: 10.1016/j.cell.2023.11.011.
[69]
PIETSCH M, HO A, BARDANZELLU A, et al. APPLAUSE: Automatic Prediction of PLAcental health via U-Net Segmentation and statistical Evaluation[J/OL]. Med Image Anal, 2021, 72: 102145 [2024-08-17]. https://pubmed.ncbi.nlm.nih.gov/34229190/. DOI: 10.1016/j.media.2021.102145.
[70]
HO A E P, HUTTER J, JACKSON L H, et al. T2* placental magnetic resonance imaging in preterm preeclampsia: an observational cohort study[J]. Hypertension, 2020, 75(6): 1523-1531. DOI: 10.1161/HYPERTENSIONAHA.120.14701.
[71]
PINI N, LUCCHINI M, ESPOSITO G, et al. A machine learning approach to monitor the emergence of late intrauterine growth restriction[J/OL]. Front Artif Intell, 2021, 4: 622616 [2024-08-17]. https://pubmed.ncbi.nlm.nih.gov/34229190/. DOI: 10.3389/frai.2021.622616.

PREV Research progress in multiparametric MRI for evaluating extraprostatic extension of prostate cancer
NEXT Clinical application and research advances of magnetic resonance-guided focused ultrasound in central nervous system diseases
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn