Share:
Share this content in WeChat
X
Review
Clinical application and research advances of magnetic resonance-guided focused ultrasound in central nervous system diseases
LIU Shuo  XU Jingyao  SHI Yanhong  WANG Xinhui  WANG Meiyun 

Cite this article as: LIU S, XU J Y, SHI Y H, et al. Clinical application and research advances of magnetic resonance-guided focused ultrasound in central nervous system diseases[J]. Chin J Magn Reson Imaging, 2025, 16(10): 222-228. DOI:10.12015/issn.1674-8034.2025.10.035.


[Abstract] Magnetic resonance-guided focused ultrasound (MRgFUS) is a noninvasive therapeutic technology that integrates real-time magnetic resonance imaging (MRI) with precise ultrasound energy, demonstrating groundbreaking progress in the treatment of neurological disorders in recent years. This article systematically reviews the clinical applications of MRgFUS in Alzheimer's disease (AD), Parkinson's disease (PD), essential tremor (ET), and other conditions through mechanisms including thermal ablation, mechanical effects, and blood-brain barrier (BBB) opening, while exploring future research directions. Current evidence indicates that MRgFUS exhibits significant advantages in improving motor symptoms, enhancing drug delivery, and neuromodulation. However, further validation is required regarding its long-term efficacy and individualized treatment protocols. This article reviews the clinical applications of MRgFUS in central nervous system disorders, analyzes the limitations of the current study, and proposes future research directions, aiming to provide a comprehensive reference for the clinical application of MRgFUS, to promote its optimization and innovation in the treatment of diseases, and to provide reference and assistance for related clinical research.
[Keywords] Alzheimer's disease;Parkinson's disease;essential tremor;magnetic resonance-guided focused ultrasound;magnetic resonance imaging;blood-brain barrier opening

LIU Shuo1   XU Jingyao2   SHI Yanhong1   WANG Xinhui2   WANG Meiyun3, 4*  

1 Department of Medical Imaging, Henan Provincial People's Hospital, Xinxiang Medical University, Zhengzhou 450003, China

2 Department of Medical Imaging, Zhengzhou University People's Hospital, Zhengzhou 450003, China

3 Department of Medical Imaging, Henan Province People's Hospital, Zhengzhou 450003, China

4 Institute of Biomedical Sciences, Henan Academy of Sciences, Zhengzhou 450046, China

Corresponding author: WANG M Y, E-mail: mywang@zzu.edu.cn

Conflicts of interest   None.

Received  2025-07-14
Accepted  2025-09-28
DOI: 10.12015/issn.1674-8034.2025.10.035
Cite this article as: LIU S, XU J Y, SHI Y H, et al. Clinical application and research advances of magnetic resonance-guided focused ultrasound in central nervous system diseases[J]. Chin J Magn Reson Imaging, 2025, 16(10): 222-228. DOI:10.12015/issn.1674-8034.2025.10.035.

[1]
MENG Y, HYNYNEN K, LIPSMAN N. Applications of focused ultrasound in the brain: from thermoablation to drug delivery[J]. Nat Rev Neurol, 2021, 17(1): 7-22. DOI: 10.1038/s41582-020-00418-z.
[2]
HENN M C, SMITH H D, LOPEZ RAMOS C G, et al. A systematic review of focused ultrasound for psychiatric disorders: current applications, opportunities, and challenges[J/OL]. Neurosurg Focus, 2024, 57(3): E8 [2025-07-13]. https://pubmed.ncbi.nlm.nih.gov/39217636/. DOI: 10.3171/2024.6.FOCUS24278.
[3]
LEV-TOV L, BARBOSA D A N, GHANOUNI P, et al. Focused ultrasound for functional neurosurgery[J]. J Neurooncol, 2022, 156(1): 17-22. DOI: 10.1007/s11060-021-03818-3.
[4]
AKHTAR A, ANDLEEB A, WARIS T S, et al. Neurodegenerative diseases and effective drug delivery: a review of challenges and novel therapeutics[J/OL]. J Control Release, 2021, 330: 1152-1167 [2025-07-13]. https://pubmed.ncbi.nlm.nih.gov/33197487/. DOI: 10.1016/j.jconrel.2020.11.021.
[5]
SHIRAMBA A, LANE S, RAY N, et al. Efficacy and safety of magnetic resonance-guided focused ultrasound thalamotomy in essential tremor: a systematic review and metanalysis[J]. Mov Disord, 2025, 40(6): 1020-1033. DOI: 10.1002/mds.30188.
[6]
STAVARACHE M A, CHAZEN J L, KAPLITT M G. Innovative applications of MR-guided focused ultrasound for neurological disorders[J/OL]. World Neurosurg, 2021, 145: 581-589 [2025-07-13]. https://pubmed.ncbi.nlm.nih.gov/33348524/. DOI: 10.1016/j.wneu.2020.08.052.
[7]
MENG Y, KALIA L V, KALIA S K, et al. Current progress in magnetic resonance-guided focused ultrasound to facilitate drug delivery across the blood-brain barrier[J/OL]. Pharmaceutics, 2024, 16(6): 719 [2025-07-13]. https://pubmed.ncbi.nlm.nih.gov/38931843/. DOI: 10.3390/pharmaceutics16060719.
[8]
MENG Y, JONES R M, DAVIDSON B, et al. Technical principles and clinical workflow of transcranial MR-guided focused ultrasound[J]. Stereotact Funct Neurosurg, 2021, 99(4): 329-342. DOI: 10.1159/000512111.
[9]
BAUER R, MARTIN E, HAEGELE-LINK S, et al. Noninvasive functional neurosurgery using transcranial MR imaging-guided focused ultrasound[J/OL]. Parkinsonism Relat Disord, 2014, 20(Suppl 1): S197-S199 [2025-07-13]. https://pubmed.ncbi.nlm.nih.gov/24262180/. DOI: 10.1016/S1353-8020(13)70046-4.
[10]
SHEIKOV N, MCDANNOLD N, VYKHODTSEVA N, et al. Cellular mechanisms of the blood-brain barrier opening induced by ultrasound in presence of microbubbles[J]. Ultrasound Med Biol, 2004, 30(7): 979-989. DOI: 10.1016/j.ultrasmedbio.2004.04.010.
[11]
ARYAL M, ARVANITIS C D, ALEXANDER P M, et al. Ultrasound-mediated blood-brain barrier disruption for targeted drug delivery in the central nervous system[J/OL]. Adv Drug Deliv Rev, 2014, 72: 94-109 [2025-07-13]. https://pubmed.ncbi.nlm.nih.gov/24462453/. DOI: 10.1016/j.addr.2014.01.008.
[12]
NATERA-VILLALBA E, RUIZ-YANZI M A, GASCA-SALAS C, et al. MR-guided focused ultrasound in movement disorders and beyond: Lessons learned and new frontiers[J/OL]. Parkinsonism Relat Disord, 2024, 122: 106040 [2025-07-13]. https://pubmed.ncbi.nlm.nih.gov/38378311/. DOI: 10.1016/j.parkreldis.2024.106040.
[13]
PULEO C, COTERO V. Noninvasive neuromodulation of peripheral nerve pathways using ultrasound and its current therapeutic implications[J/OL]. Cold Spring Harb Perspect Med, 2020, 10(2): a034215 [2025-07-13]. https://pubmed.ncbi.nlm.nih.gov/31138539/. DOI: 10.1101/cshperspect.a034215.
[14]
DARMANI G, BERGMANN T O, PAULY K B, et al. Non-invasive transcranial ultrasound stimulation for neuromodulation[J/OL]. Clin Neurophysiol, 2022, 135: 51-73 [2025-07-13]. https://pubmed.ncbi.nlm.nih.gov/35033772/. DOI: 10.1016/j.clinph.2021.12.010.
[15]
FISHMAN P S, FISCHELL J M. Focused ultrasound mediated opening of the blood-brain barrier for neurodegenerative diseases[J/OL]. Front Neurol, 2021, 12: 749047 [2025-07-13]. https://pubmed.ncbi.nlm.nih.gov/34803886/. DOI: 10.3389/fneur.2021.749047.
[16]
STAMP M E M, HALWES M, NISBET D, et al. Breaking barriers: exploring mechanisms behind opening the blood-brain barrier[J/OL]. Fluids Barriers CNS, 2023, 20(1): 87 [2025-07-13]. https://pubmed.ncbi.nlm.nih.gov/38017530/. DOI: 10.1186/s12987-023-00489-2.
[17]
MENG Y, POPLE C B, HUANG Y X, et al. Putaminal recombinant glucocerebrosidase delivery with magnetic resonance-guided focused ultrasound in Parkinson's disease: a phase I study[J]. Mov Disord, 2022, 37(10): 2134-2139. DOI: 10.1002/mds.29190.
[18]
MENG Y, REILLY R M, PEZO R C, et al. MR-guided focused ultrasound enhances delivery of trastuzumab to Her2-positive brain metastases[J/OL]. Sci Transl Med, 2021, 13(615): eabj4011 [2025-07-13]. https://pubmed.ncbi.nlm.nih.gov/34644145/. DOI: 10.1126/scitranslmed.abj4011.
[19]
TARANTA V, SAPORITO G, ORNELLO R, et al. Magnetic Resonance-guided Focused Ultrasound thalamotomy for refractory neuropathic pain: a systematic review and critical appraisal of current knowledge[J/OL]. Ther Adv Neurol Disord, 2023, 16: 17562864231180729 [2025-07-13]. https://pubmed.ncbi.nlm.nih.gov/37363184/. DOI: 10.1177/17562864231180729.
[20]
MAINPRIZE T, LIPSMAN N, HUANG Y X, et al. Blood-brain barrier opening in primary brain tumors with non-invasive MR-guided focused ultrasound: a clinical safety and feasibility study[J/OL]. Sci Rep, 2019, 9(1): 321 [2025-07-13]. https://pubmed.ncbi.nlm.nih.gov/30674905/. DOI: 10.1038/s41598-018-36340-0.
[21]
RAJAH KUMARAN K, YUNUSA S, PERIMAL E, et al. Insights into the pathophysiology of Alzheimer's disease and potential therapeutic targets: a current perspective[J]. J Alzheimers Dis, 2023, 91(2): 507-530. DOI: 10.3233/JAD-220666.
[22]
YANG H M. Recent advances in antibody therapy for Alzheimer's disease: focus on bispecific antibodies[J/OL]. Int J Mol Sci, 2025, 26(13): 6271 [2025-07-13]. https://pubmed.ncbi.nlm.nih.gov/40650049/. DOI: 10.3390/ijms26136271.
[23]
DURHAM P G, BUTNARIU A, ALGHORAZI R, et al. Current clinical investigations of focused ultrasound blood-brain barrier disruption: a review[J/OL]. Neurotherapeutics, 2024, 21(3): e00352 [2025-07-13]. https://pubmed.ncbi.nlm.nih.gov/38636309/. DOI: 10.1016/j.neurot.2024.e00352.
[24]
MENG Y, GOUBRAN M, RABIN J S, et al. Blood-brain barrier opening of the default mode network in Alzheimer's disease with magnetic resonance-guided focused ultrasound[J]. Brain, 2023, 146(3): 865-872. DOI: 10.1093/brain/awac459.
[25]
REZAI A R, D'HAESE P F, FINOMORE V, et al. Ultrasound blood-brain barrier opening and aducanumab in Alzheimer's disease[J]. N Engl J Med, 2024, 390(1): 55-62. DOI: 10.1056/NEJMoa2308719.
[26]
PARK S H, BAIK K, JEON S, et al. Extensive frontal focused ultrasound mediated blood-brain barrier opening for the treatment of Alzheimer's disease: a proof-of-concept study[J/OL]. Transl Neurodegener, 2021, 10(1): 44 [2025-07-13]. https://pubmed.ncbi.nlm.nih.gov/34740367/. DOI: 10.1186/s40035-021-00269-8.
[27]
EPELBAUM S, BURGOS N, CANNEY M, et al. Pilot study of repeated blood-brain barrier disruption in patients with mild Alzheimer's disease with an implantable ultrasound device[J/OL]. Alzheimers Res Ther, 2022, 14(1): 40 [2025-07-13]. https://pubmed.ncbi.nlm.nih.gov/35260178/. DOI: 10.1186/s13195-022-00981-1.
[28]
REZAI A R, RANJAN M, HAUT M W, et al. Focused ultrasound-mediated blood-brain barrier opening in Alzheimer's disease: long-term safety, imaging, and cognitive outcomes[J]. J Neurosurg, 2023, 139(1): 275-283. DOI: 10.3171/2022.9.jns221565.
[29]
REZAI A R, RANJAN M, D'HAESE P F, et al. Noninvasive hippocampal blood-brain barrier opening in Alzheimer's disease with focused ultrasound[J]. Proc Natl Acad Sci USA, 2020, 117(17): 9180-9182. DOI: 10.1073/pnas.2002571117.
[30]
D'HAESE P F, RANJAN M, SONG A, et al. β-amyloid plaque reduction in the hippocampus after focused ultrasound-induced blood-brain barrier opening in Alzheimer's disease[J/OL]. Front Hum Neurosci, 2020, 14: 593672 [2025-07-13]. https://pubmed.ncbi.nlm.nih.gov/33132889/. DOI: 10.3389/fnhum.2020.593672.
[31]
XHIMA K, MARKHAM-COULTES K, NEDEV H, et al. Focused ultrasound delivery of a selective TrkA agonist rescues cholinergic function in a mouse model of Alzheimer's disease[J/OL]. Sci Adv, 2020, 6(4): eaax6646 [2025-07-13]. https://pubmed.ncbi.nlm.nih.gov/32010781/. DOI: 10.1126/sciadv.aax6646.
[32]
XHIMA K, MARKHAM-COULTES K, HAHN KOFOED R, et al. Ultrasound delivery of a TrkA agonist confers neuroprotection to Alzheimer-associated pathologies[J]. Brain, 2022, 145(8): 2806-2822. DOI: 10.1093/brain/awab460.
[33]
WANG X Y, XIONG Y Q, LIN J J, et al. Target selection for magnetic resonance-guided focused ultrasound in the treatment of Parkinson's disease[J]. J Magn Reson Imaging, 2022, 56(1): 35-44. DOI: 10.1002/jmri.28080.
[34]
SINAI A, NASSAR M, SPRECHER E, et al. Focused ultrasound thalamotomy in tremor dominant Parkinson's disease: long-term results[J]. J Parkinsons Dis, 2022, 12(1): 199-206. DOI: 10.3233/JPD-212810.
[35]
ARMENGOU-GARCIA L, SANCHEZ-CATASUS C A, AVILES-OLMOS I, et al. Unilateral magnetic resonance-guided focused ultrasound lesion of the subthalamic nucleus in Parkinson's disease: a prospective study[J]. Mov Disord, 2024, 39(12): 2230-2241. DOI: 10.1002/mds.30020.
[36]
EISENBERG H M, KRISHNA V, ELIAS W J, et al. MR-guided focused ultrasound pallidotomy for Parkinson's disease: safety and feasibility[J]. J Neurosurg, 2020, 135(3): 792-798. DOI: 10.3171/2020.6.JNS192773.
[37]
MARTÍNEZ-FERNÁNDEZ R, NATERA-VILLALBA E, et al. Prospective long-term follow-up of focused ultrasound unilateral subthalamotomy for parkinson disease[J/OL]. Neurology, 2023, 100(13): e1395-e1405 [2025-07-13]. https://pubmed.ncbi.nlm.nih.gov/36631272/. DOI: 10.1212/WNL.0000000000206771.
[38]
MARTÍNEZ-FERNÁNDEZ R, PINEDA-PARDO J A. Magnetic resonance-guided focused ultrasound for movement disorders: clinical and neuroimaging advances[J]. Curr Opin Neurol, 2020, 33(4): 488-497. DOI: 10.1097/WCO.0000000000000840.
[39]
CAMPINS-ROMEU M, CONDE-SARDÓN R, SASTRE-BATALLER I, et al. MRgFUS subthalamotomy in Parkinson's disease: an approach aimed at minimizing lesion volume[J/OL]. NPJ Parkinsons Dis, 2024, 10(1): 230 [2025-07-13]. https://pubmed.ncbi.nlm.nih.gov/39622797/. DOI: 10.1038/s41531-024-00843-7.
[40]
DAHMANI L, BAI Y, LI M L, et al. Focused ultrasound thalamotomy for tremor treatment impacts the cerebello-thalamo-cortical network[J/OL]. NPJ Parkinsons Dis, 2023, 9(1): 90 [2025-07-13]. https://pubmed.ncbi.nlm.nih.gov/37322044/. DOI: 10.1038/s41531-023-00543-8.
[41]
LIN J J, KANG X P, XIONG Y Q, et al. Convergent structural network and gene signatures for MRgFUS thalamotomy in patients with Parkinson's disease[J/OL]. Neuroimage, 2021, 243: 118550 [2025-07-13]. https://pubmed.ncbi.nlm.nih.gov/34481084/. DOI: 10.1016/j.neuroimage.2021.118550.
[42]
PURRER V, POHL E, BORGER V, et al. Motor and non-motor outcome in tremor dominant Parkinson's disease after MR-guided focused ultrasound thalamotomy[J]. J Neurol, 2024, 271(7): 3731-3742. DOI: 10.1007/s00415-024-12469-z.
[43]
CHEN J C, LU M K, CHEN C M, et al. Stepwise dual-target magnetic resonance–guided focused ultrasound in tremor-dominant parkinson disease: a feasibility study[J/OL]. World Neurosurg, 2023, 171: e464-e470 [2025-07-13]. https://pubmed.ncbi.nlm.nih.gov/36563853/. DOI: 10.1016/j.wneu.2022.12.049.
[44]
CHEN J C, CHEN C M, AOH Y, et al. Stepwise dual-target magnetic resonance-guided focused ultrasound in tremor-dominant Parkinson disease: One-year follow-up[J/OL]. Eur J Neurol, 2024, 31(12): e16468 [2025-07-13]. https://pubmed.ncbi.nlm.nih.gov/39287607/. DOI: 10.1111/ene.16468.
[45]
KRISHNA V, FISHMAN P S, EISENBERG H M, et al. Trial of globus pallidus focused ultrasound ablation in Parkinson's disease[J]. N Engl J Med, 2023, 388(8): 683-693. DOI: 10.1056/NEJMoa2202721.
[46]
HORISAWA S, FUKUI A, YAMAHATA H, et al. Unilateral pallidothalamic tractotomy for akinetic-rigid Parkinson's disease: a prospective open-label study[J]. J Neurosurg, 2021, 135(3): 799-805. DOI: 10.3171/2020.7.JNS201547.
[47]
GASCA-SALAS C, FERNÁNDEZ-RODRÍGUEZ B, PINEDA-PARDO J A, et al. Blood-brain barrier opening with focused ultrasound in Parkinson's disease dementia[J/OL]. Nat Commun, 2021, 12(1): 779 [2025-07-13]. https://pubmed.ncbi.nlm.nih.gov/33536430/. DOI: 10.1038/s41467-021-21022-9.
[48]
GASCA-SALAS C, PINEDA-PARDO J A, DEL ÁLAMO M, et al. Nigrostriatal blood-brain barrier opening in Parkinson's disease[J]. J Neurol Neurosurg Psychiatry, 2024, 95(11): 1089-1092. DOI: 10.1136/jnnp-2023-332967.
[49]
HUANG Y X, MENG Y, POPLE C B, et al. Cavitation feedback control of focused ultrasound blood-brain barrier opening for drug delivery in patients with Parkinson's disease[J/OL]. Pharmaceutics, 2022, 14(12): 2607 [2025-07-13]. https://pubmed.ncbi.nlm.nih.gov/36559101/. DOI: 10.3390/pharmaceutics14122607.
[50]
PINEDA-PARDO J A, GASCA-SALAS C, FERNÁNDEZ-RODRÍGUEZ B, et al. Striatal blood-brain barrier opening in Parkinson's disease dementia: a pilot exploratory study[J]. Mov Disord, 2022, 37(10): 2057-2065. DOI: 10.1002/mds.29134.
[51]
BLESA J, PINEDA-PARDO J A, INOUE K I, et al. BBB opening with focused ultrasound in nonhuman Primates and Parkinson's disease patients: Targeted AAV vector delivery and PET imaging[J/OL]. Sci Adv, 2023, 9(16): eadf4888 [2025-07-13]. https://pubmed.ncbi.nlm.nih.gov/37075119/. DOI: 10.1126/sciadv.adf4888.
[52]
BINDER D K, SHAH B B, ELIAS W J. Focused ultrasound and other lesioning in the treatment of tremor[J/OL]. J Neurol Sci, 2022, 435: 120193 [2025-07-13]. https://pubmed.ncbi.nlm.nih.gov/35259650/. DOI: 10.1016/j.jns.2022.120193.
[53]
OSADA T, KONISHI S. Noninvasive intervention by transcranial ultrasound stimulation: Modulation of neural circuits and its clinical perspectives[J]. Psychiatry Clin Neurosci, 2024, 78(5): 273-281. DOI: 10.1111/pcn.13663.
[54]
SHANKER V. Essential tremor: diagnosis and management[J/OL]. BMJ, 2019, 366: l4485 [2025-07-13]. https://pubmed.ncbi.nlm.nih.gov/31383632/. DOI: 10.1136/bmj.l4485.
[55]
KINDLER C, UPADHYAY N, PURRER V, et al. MRgFUS of the nucleus ventralis intermedius in essential tremor modulates functional connectivity within the classical tremor network and beyond[J/OL]. Parkinsonism Relat Disord, 2023, 115: 105845 [2025-07-13]. https://pubmed.ncbi.nlm.nih.gov/37717502/. DOI: 10.1016/j.parkreldis.2023.105845.
[56]
KATO S, MAESAWA S, BAGARINAO E, et al. Magnetic resonance-guided focused ultrasound thalamotomy restored distinctive resting-state networks in patients with essential tremor[J]. J Neurosurg, 2023, 138(2): 306-317. DOI: 10.3171/2022.5.jns22411.
[57]
XIONG Y Q, LIN J J, BIAN X B, et al. Treatment-specific network modulation of MRI-guided focused ultrasound thalamotomy in essential tremor: modulation of ET-related network by MRgFUS thalamotomy[J]. Neurotherapeutics, 2022, 19(6): 1920-1931. DOI: 10.1007/s13311-022-01294-9.
[58]
ARCADI A, AVILES-OLMOS I, GONZALEZ-QUARANTE L H, et al. Magnetic resonance-guided focused ultrasound (MRgFUS)-thalamotomy for essential tremor: lesion location and clinical outcomes[J]. Mov Disord, 2024, 39(6): 1015-1025. DOI: 10.1002/mds.29801.
[59]
RANJAN M, ELIAS G J B, BOUTET A, et al. Tractography-based targeting of the ventral intermediate nucleus: accuracy and clinical utility in MRgFUS thalamotomy[J]. J Neurosurg, 2020, 133(4): 1002-1009. DOI: 10.3171/2019.6.jns19612.
[60]
SALUJA S, BARBOSA D A N, PARKER J J, et al. Case report on deep brain stimulation rescue after suboptimal MR-guided focused ultrasound thalamotomy for essential tremor: a tractography-based investigation[J/OL]. Front Hum Neurosci, 2020, 14: 191 [2025-07-13]. https://pubmed.ncbi.nlm.nih.gov/32676015/. DOI: 10.3389/fnhum.2020.00191.
[61]
GERMANN J, SANTYR B, BOUTET A, et al. Comparative neural correlates of DBS and MRgFUS lesioning for tremor control in essential tremor[J]. J Neurol Neurosurg Psychiatry, 2024, 95(2): 180-183. DOI: 10.1136/jnnp-2022-330795.
[62]
MARTÍNEZ-FERNÁNDEZ R, MAHENDRAN S, PINEDA-PARDO J A, et al. Bilateral staged magnetic resonance-guided focused ultrasound thalamotomy for the treatment of essential tremor: a case series study[J]. J Neurol Neurosurg Psychiatry, 2021, 92(9): 927-931. DOI: 10.1136/jnnp-2020-325278.
[63]
PARK Y S, JUNG N Y, NA Y C, et al. Four-year follow-up results of magnetic resonance-guided focused ultrasound thalamotomy for essential tremor[J]. Mov Disord, 2019, 34(5): 727-734. DOI: 10.1002/mds.27637.
[64]
COSGROVE G R, LIPSMAN N, LOZANO A M, et al. Magnetic resonance imaging-guided focused ultrasound thalamotomy for essential tremor: 5-year follow-up results[J]. J Neurosurg, 2023, 138(4): 1028-1033. DOI: 10.3171/2022.6.jns212483.
[65]
THALER C, TIAN Q Y, WINTERMARK M, et al. Changes in the cerebello-thalamo-cortical network after magnetic resonance-guided focused ultrasound thalamotomy[J]. Brain Connect, 2023, 13(1): 28-38. DOI: 10.1089/brain.2021.0157.
[66]
WANG X Y, LIN J J, LU H X, et al. Alteration of white matter connectivity for MR-guided focused ultrasound in the treatment of essential tremor[J]. J Magn Reson Imaging, 2024, 59(4): 1358-1370. DOI: 10.1002/jmri.28896.
[67]
RICCIARDI G K, PAIO F, ZIVELONGHI C, et al. MRgFUS disconnection surgery for hypothalamic hamartoma-related epilepsy: case report and literature review[J]. Neurol Sci, 2025, 46(3): 1399-1404. DOI: 10.1007/s10072-024-07946-2.
[68]
DAVIDSON B, HAMANI C, HUANG Y X, et al. Magnetic resonance-guided focused ultrasound capsulotomy for treatment-resistant psychiatric disorders[J]. Oper Neurosurg, 2020, 19(6): 741-749. DOI: 10.1093/ons/opaa240.
[69]
CHANG K W, CHANG J G, JUNG H H, et al. Long-term clinical outcome of a novel bilateral capsulotomy with focused ultrasound in refractory obsessive-compulsive disorder treatment[J]. Mol Psychiatry, 2025, 30(5): 1897-1905. DOI: 10.1038/s41380-024-02799-9.
[70]
HAMANI C, DAVIDSON B, RABIN J S, et al. Long-term safety and efficacy of focused ultrasound capsulotomy for obsessive-compulsive disorder and major depressive disorder[J]. Biol Psychiatry, 2025, 97(7): 698-706. DOI: 10.1016/j.biopsych.2024.08.015.
[71]
AHMED A K, ZHUO J C, GULLAPALLI R P, et al. Focused ultrasound central lateral thalamotomy for the treatment of refractory neuropathic pain: phase I trial[J]. Neurosurgery, 2024, 94(4): 690-699. DOI: 10.1227/neu.0000000000002752.
[72]
ISHIDA J, ALLI S, BONDOC A, et al. MRI-guided focused ultrasound enhances drug delivery in experimental diffuse intrinsic pontine glioma[J/OL]. J Control Release, 2021, 330: 1034-1045 [2025-07-13]. https://pubmed.ncbi.nlm.nih.gov/33188825/. DOI: 10.1016/j.jconrel.2020.11.010.
[73]
CHEN J W, YANG R, YU H W, et al. Ultrasmall iron oxide nanoparticles with MRgFUS for enhanced magnetic resonance imaging of orthotopic glioblastoma[J]. J Mater Chem B, 2024, 12(20): 4833-4842. DOI: 10.1039/D3TB02966B.
[74]
KAWASAKI M, MURAMATSU S, NAMBA H, et al. Efficacy and safety of magnetic resonance-guided focused ultrasound treatment for refractory chronic pain of medial knee osteoarthritis[J]. Int J Hyperthermia, 2021, 38(2): 46-55. DOI: 10.1080/02656736.2021.1955982.
[75]
YIN X, TANG N, FAN X, et al. Mid-term efficacy grading evaluation and predictive factors of magnetic resonance-guided focused ultrasound surgery for painful bone metastases: a multi-center study[J]. Eur Radiol, 2023, 33(2): 1465-1474. DOI: 10.1007/s00330-022-09118-2.
[76]
HAN X Y, HUANG R Z, MENG T, et al. The roles of magnetic resonance-guided focused ultrasound in pain relief in patients with bone metastases: a systemic review and meta-analysis[J/OL]. Front Oncol, 2021, 11: 617295 [2025-07-13]. https://pubmed.ncbi.nlm.nih.gov/34458131/. DOI: 10.3389/fonc.2021.617295.
[77]
HU R R, HE P C, TIAN X N, et al. Efficacy and safety of magnetic resonance-guided focused ultrasound for the treatment of osteoid osteoma: a systematic review and meta-analysis[J/OL]. Eur J Radiol, 2023, 166: 111006 [2025-07-13]. https://pubmed.ncbi.nlm.nih.gov/37523874/. DOI: 10.1016/j.ejrad.2023.111006.
[78]
KOCIUBA J, ŁOZIŃSKI T, ZGLICZYŃSKA M, et al. Occurrence of adverse events after magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU) therapy in symptomatic uterine fibroids-a retrospective case-control study[J/OL]. Int J Hyperthermia, 2023, 40(1): 2219436 [2025-07-13]. https://pubmed.ncbi.nlm.nih.gov/37277102/. DOI: 10.1080/02656736.2023.2219436.
[79]
KOCIUBA J, ŁOZIŃSKI T, ZGLICZYŃSKA M, et al. Adverse events and complications after magnetic resonance-guided focused ultrasound (MRgFUS) therapy in uterine fibroids - a systematic review and future perspectives[J/OL]. Int J Hyperthermia, 2023, 40(1): 2174274 [2025-07-13]. https://pubmed.ncbi.nlm.nih.gov/36775655/. DOI: 10.1080/02656736.2023.2174274.
[80]
HU S Y, LIU Y H, CHEN R S, et al. Exploring the diagnostic performance of magnetic resonance imaging in ultrasound-guided high-intensity focused ultrasound ablation for abdominal wall endometriosis[J/OL]. Front Physiol, 2022, 13: 819259 [2025-07-13]. https://pubmed.ncbi.nlm.nih.gov/35242052/. DOI: 10.3389/fphys.2022.819259.

PREV Research progress of MRI technique in evaluating placental insufficiency
NEXT Advances in MRI wireless coil
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn