Share:
Share this content in WeChat
X
Review
Advances in MRI wireless coil
RAN Yunlong  ZHANG Qiang  LI Zhenxin  MA Shuang  JIN Feng  ZHAO Lei 

Cite this article as: RAN Y L, ZHANG Q, LI Z X, et al. Advances in MRI wireless coil[J]. Chin J Magn Reson Imaging, 2025, 16(10): 229-234. DOI:10.12015/issn.1674-8034.2025.10.036.


[Abstract] Radiofrequency coils, as critical components of MRI systems, serve the essential functions of transmitting and receiving signals. Over the past four decades, coil design and development have undergone significant evolution—from volume coils to the recently introduced wireless coils—achieving groundbreaking advancements in wireless technology, flexibility, and lightweight design. Wireless coils have garnered increasing attention for their ability to eliminate the need for cable connections while significantly improving image quality. The core value of wireless coils lies in their ability to substantially enhance image quality in targeted regions without requiring cable connections or independent power supplies, while simultaneously avoiding hardware modifications to existing MRI systems and associated high costs. Compared to traditional approaches of improving image quality by adding multi-channel standard receiving coils, wireless coils demonstrate notable advantages including portability, cost-effectiveness, compatibility with mainstream brand equipment, and enhanced patient comfort. This article will elucidate the technical principles and innovative applications of wireless coils, summarize current developments of wireless coils, analyzes the current limitations of research, and proposes future research directions, providing a reference for the clinical popularization of wireless coils.
[Keywords] wireless coil;resonator;metamaterial;signal-to-noise ratio;magnetic resonance imaging

RAN Yunlong1   ZHANG Qiang2   LI Zhenxin1   MA Shuang1   JIN Feng1   ZHAO Lei1, 3*  

1 Department of Diagnostic Imaging, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China

2 Health Management Center, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China

3 Medical Engineering, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China

Corresponding author: ZHAO L, E-mail: 281005117@qq.com

Conflicts of interest   None.

Received  2025-07-03
Accepted  2025-09-26
DOI: 10.12015/issn.1674-8034.2025.10.036
Cite this article as: RAN Y L, ZHANG Q, LI Z X, et al. Advances in MRI wireless coil[J]. Chin J Magn Reson Imaging, 2025, 16(10): 229-234. DOI:10.12015/issn.1674-8034.2025.10.036.

[1]
SCHICK F, PIEPER C C, KUPCZYK P, et al. 1.5 vs 3 tesla magnetic resonance imaging: a review of favorite clinical applications for both field strengths-part 1[J]. Invest Radiol, 2021, 56(11): 680-691. DOI: 10.1097/RLI.0000000000000812.
[2]
CHEN K C, HA A S, BARTOLOTTA R J, et al. ACR appropriateness criteria® acute elbow and forearm pain[J/OL]. J Am Coll Radiol, 2024, 21(11): S355-S363 [2025-05-15]. https://pubmed.ncbi.nlm.nih.gov/39488347/. DOI: 10.1016/j.jacr.2024.08.012.
[3]
LE STER C, GRANT A, VAN DE MOORTELE P F, et al. Magnetic field strength dependent SNR gain at the center of a spherical phantom and up to 11.7T[J]. Magn Reson Med, 2022, 88(5): 2131-2138. DOI: 10.1002/mrm.29391.
[4]
HECKEL R, JACOB M, CHAUDHARI A, et al. Deep learning for accelerated and robust MRI reconstruction[J]. MAGMA, 2024, 37(3): 335-368. DOI: 10.1007/s10334-024-01173-8.
[5]
WAKS M, LAGORE R L, AUERBACH E, et al. RF coil design strategies for improving SNR at the ultrahigh magnetic field of 10.5T[J]. Magn Reson Med, 2025, 93(2): 873-888. DOI: 10.1002/mrm.30315.
[6]
KWOK W E. Basic principles of and practical guide to clinical MRI radiofrequency coils[J]. Radiographics, 2022, 42(3): 898-918. DOI: 10.1148/rg.210110.
[7]
DARNELL D, TRUONG T K, SONG A W. Recent advances in radio-frequency coil technologies: flexible, wireless, and integrated coil arrays[J]. J Magn Reson Imaging, 2022, 55(4): 1026-1042. DOI: 10.1002/jmri.27865.
[8]
LU M, WANG R L, CHEN Y Y, et al. Detunable wireless ladder resonator inserts for enhanced SNR of local array coil at 1.5T MRI[J]. Med Phys, 2025, 52(6): 3649-3657. DOI: 10.1002/mp.17731.
[9]
GUO Z W, XU Y, HU S Y, et al. Metamaterial-enhanced magnetic resonance imaging: a review[J/OL]. Adv Photon Nexus, 2024, 3(5) [2025-05-15]. https://www.spiedigitallibrary.org/journals/advanced-photonics-nexus/volume-3/issue-05/054001/Metamaterial-enhanced-magnetic-resonance-imaging-a-review/10.1117/1.APN.3.5.054001.full. DOI: 10.1117/1.APN.3.5.054001.
[10]
YI Y, CHI Z H, WANG Y K, et al. In vivo MRI of knee using a metasurface-inspired wireless coil[J]. Magn Reson Med, 2024, 91(2): 530-540. DOI: 10.1002/mrm.29870.
[11]
WU K, ZHU X, BIFANO T G, et al. Computational-design enabled wearable and tunable metamaterials via freeform auxetics for magnetic resonance imaging[J/OL]. Adv Sci (Weinh), 2024, 11(26): e2400261 [2025-05-15]. https://pubmed.ncbi.nlm.nih.gov/38659228/. DOI: 10.1002/advs.202400261.
[12]
MAURYA S K, SCHMIDT R. A metamaterial-like structure design using non-uniformly distributed dielectric and conducting strips to boost the RF field distribution in 7 T MRI[J/OL]. Sensors (Basel), 2024, 24(7): 2250 [2025-05-25]. https://pubmed.ncbi.nlm.nih.gov/38610461/. DOI: 10.3390/s24072250.
[13]
QIAN C Q, YU X, CHEN D Y, et al. Wireless amplified nuclear MR detector (WAND) for high-spatial-resolution MR imaging of internal organs: preclinical demonstration in a rodent model[J]. Radiology, 2013, 268(1): 228-236. DOI: 10.1148/radiol.13121352.
[14]
CHENG X G, TIAN C, HU R, et al. Evaluation of the relationship between the attachment type of lateral pterygoid muscle and the position of temporomandibular joint disc in patients with temporomandibular joint disorders based on wireless amplified MRI detector high resolution imaging[J]. Chin J Stomatol, 2023, 58(6): 569-574. DOI: 10.3760/cma.j.cn112144-20230418-00161.
[15]
ZHU H Q, ZHANG Q, LI R S, et al. Detunable wireless resonator arrays for TMJ MRI: a comparative study[J/OL]. Magn Reson Imaging, 2024, 111: 84-89 [2025-05-25]. https://pubmed.ncbi.nlm.nih.gov/38621550/. DOI: 10.1016/j.mri.2024.04.016.
[16]
FEDOTOV A, TIKHONOV P, PUCHNIN V, et al. A concept of volume wireless receive-only coil for 1.5T MRI[J/OL]. J Magn Reson, 2025, 374: 107841 [2025-05-25]. https://pubmed.ncbi.nlm.nih.gov/40157226/. DOI: 10.1016/j.jmr.2025.107841.
[17]
WU K, ZHU X, ANDERSON S W, et al. Wireless, customizable coaxially shielded coils for magnetic resonance imaging[J/OL]. Sci Adv, 2024, 10(24): eadn5195 [2025-05-25]. https://pubmed.ncbi.nlm.nih.gov/38865448/. DOI: 10.1126/sciadv.adn5195.
[18]
DÜX D M, KOWAL R, KNULL L, et al. Flexible and wireless metasurface coils for knee and elbow MRI[J/OL]. Eur Radiol Exp, 2025, 9(1): 13 [2025-05-25]. https://pubmed.ncbi.nlm.nih.gov/39885091/. DOI: 10.1186/s41747-024-00549-8.
[19]
LU M, CHAI S, ZHU H, et al. Low-cost inductively coupled stacked wireless RF coil for MRI at 3 T[J/OL]. NMR Biomed, 2023, 36(1): e4818 [2025-05-25]. https://pubmed.ncbi.nlm.nih.gov/35994526/. DOI: 10.1002/nbm.4818.
[20]
GRUBER B, FROELING M, LEINER T, et al. RF coils: a practical guide for nonphysicists[J]. J Magn Reson Imaging, 2018, 48(3): 590-604. DOI: 10.1002/jmri.26187.
[21]
LU M, LIANG H, ZHU H Q, et al. Magnetic field probe-based co-simulation method for irregular volume-type inductively coupled wireless MRI radiofrequency coils[J/OL]. Magn Reson Imaging, 2025, 117: 110330 [2025-05-25]. https://pubmed.ncbi.nlm.nih.gov/39848453/. DOI: 10.1016/j.mri.2025.110330.
[22]
ZHU X, WU K, ANDERSON S W, et al. Wearable coaxially-shielded metamaterial for magnetic resonance imaging[J/OL]. Adv Mater, 2024, 36(31): e2313692 [2025-05-01]. https://pubmed.ncbi.nlm.nih.gov/38569592/. DOI: 10.1002/adma.202313692.
[23]
REN Q, LANG Y X, JIA Y Q, et al. High-Q metasurface signal isolator for 1.5T surface coil magnetic resonance imaging on the go[J]. Opt Express, 2024, 32(6): 8751-8762. DOI: 10.1364/OE.514806.
[24]
ZHU H Q, ZHANG Q, LI R S, et al. A detunable wireless resonator insert for high-resolution TMJ MRI at 1.5 T[J/OL]. J Magn Reson, 2024, 360: 107650 [2025-05-01]. https://pubmed.ncbi.nlm.nih.gov/38417250/. DOI: 10.1016/j.jmr.2024.107650.
[25]
BRUI E, MIKHAILOVSKAYA A, SOLOMAKHA G, et al. Volumetric wireless coil for wrist MRI at 1.5 T as a practical alternative to Tx/Rx extremity coil: a comparative study[J/OL]. J Magn Reson, 2022, 339: 107209 [2025-04-20]. https://pubmed.ncbi.nlm.nih.gov/35397309/. DOI: 10.1016/j.jmr.2022.107209.
[26]
NASONOV A, TIKHONOV P, SHCHELOKOVA A, et al. Assessing safety and transceive performance of a body coil combined with a volumetric wireless coil for wrist MRI at 3T[J]. Appl Magn Reson, 2022, 53(12): 1597-1607. DOI: 10.1007/s00723-022-01502-x.
[27]
SHCHELOKOVA A V, VAN DEN BERG C A T, DOBRYKH D A, et al. Volumetric wireless coil based on periodically coupled split-loop resonators for clinical wrist imaging[J]. Magn Reson Med, 2018, 80(4): 1726-1737. DOI: 10.1002/mrm.27140.
[28]
CHI Z H, YI Y, WANG Y K, et al. Adaptive cylindrical wireless metasurfaces in clinical magnetic resonance imaging[J/OL]. Adv Mater, 2021, 33(40): e2102469 [2025-05-02]. https://pubmed.ncbi.nlm.nih.gov/34402556/. DOI: 10.1002/adma.202102469.
[29]
WANG Y K, CHI Z H, YI Y, et al. Preclinical validation of a metasurface-inspired conformal elliptical-cylinder resonator for wrist MRI at 1.5 T[J/OL]. Magn Reson Imaging, 2025, 116: 110291 [2025-05-01]. https://pubmed.ncbi.nlm.nih.gov/39626829/. DOI: 10.1016/j.mri.2024.110291.
[30]
JANDALIYEVA A, PUCHNIN V, SHCHELOKOVA A. Volumetric wireless coils for breast MRI: a comparative analysis of metamaterial-inspired coil, Helmholtz coil, ceramic coil, and solenoid[J/OL]. J Magn Reson, 2024, 359: 107627 [2025-05-02]. https://www.ncbi.nlm.nih.gov/pubmed/38280267. DOI: 10.1016/j.jmr.2024.107627.
[31]
PUCHNIN V, SOLOMAKHA G, NIKULIN A, et al. Metamaterial inspired wireless coil for clinical breast imaging[J/OL]. J Magn Reson, 2021, 322: 106877 [2025-05-02]. https://www.ncbi.nlm.nih.gov/pubmed/33278812. DOI: 10.1016/j.jmr.2020.106877.
[32]
PUCHNIN V M, MATVIEVSKAYA O V, SLOBOZHANYUK A P, et al. Application of topological edge states in magnetic resonance imaging[J/OL]. Phys Rev Applied, 2023, 20(2): 024076 [2025-04-28]. https://link.aps.org/doi/10.1103/PhysRevApplied.20.024076. DOI: 10.1103/physrevapplied.20.024076.
[33]
ZHU H, LANG M L, YANG Y, et al. Detunable wireless Litzcage coil for human head MRI at 1.5 T[J/OL]. NMR Biomed, 2024, 37(3): e5068 [2025-05-03]. https://www.ncbi.nlm.nih.gov/pubmed/37964107. DOI: 10.1002/nbm.5068.
[34]
HILGENFELD T, SALEEM M A, SCHWINDLING F S, et al. High-resolution single tooth MRI with an inductively coupled intraoral coil-can MRI compete with CBCT?[J]. Invest Radiol, 2022, 57(11): 720-727. DOI: 10.1097/RLI.0000000000000890.
[35]
HUANG C J, LIN W L, HWANG S C, et al. A feasibility study of wireless inductively coupled surface coil for MR-guided high-intensity focused ultrasound ablation of rodents on clinical MRI systems[J/OL]. Sci Rep, 2022, 12: 21907 [2025-05-14]. https://www.ncbi.nlm.nih.gov/pubmed/36536022. DOI: 10.1038/s41598-022-26452-z.
[36]
WU K, ZHAO X G, BIFANO T G, et al. Auxetics-inspired tunable metamaterials for magnetic resonance imaging[J/OL]. Adv Mater, 2022, 34(6): e2109032 [2025-05-01]. https://www.ncbi.nlm.nih.gov/pubmed/34865253. DOI: 10.1002/adma.202109032.
[37]
DESTRUEL A, JIN J, WEBER E, et al. Integrated multi-modal antenna with coupled radiating structures (I-MARS) for 7T pTx body MRI[J]. IEEE Trans Med Imag, 2022, 41(1): 39-51. DOI: 10.1109/TMI.2021.3103654.
[38]
SCHICK F. Whole-body MRI at high field: technical limits and clinical potential[J]. Eur Radiol, 2005, 15(5): 946-959. DOI: 10.1007/s00330-005-2678-0.
[39]
ALIPOUR A, SEIFERT A C, DELMAN B N, et al. Improvement of magnetic resonance imaging using a wireless radiofrequency resonator array[J/OL]. Sci Rep, 2021, 11(1): 23034 [2025-05-15]. https://www.ncbi.nlm.nih.gov/pubmed/34845314. DOI: 10.1038/s41598-021-02533-3.
[40]
ALIPOUR A, SEIFERT A C, DELMAN B N, et al. Enhancing the brain MRI at ultra-high field systems using a meta-array structure[J]. Med Phys, 2023, 50(12): 7606-7618. DOI: 10.1002/mp.16801.
[41]
SUBRAMANIAM V, FRANKINI A, QADI A AL, et al. Radiofrequency enhancer to recover signal dropouts in 7 tesla diffusion MRI[J/OL]. Sensors (Basel), 2024, 24(21): 6981 [2025-05-06]. https://www.mdpi.com/1424-8220/24/21/6981. DOI: 10.3390/s24216981.DOI:10.3390/s24216981.
[42]
FRANKINI A, VERMA G, SEIFERT A C, et al. Improvement of MRS at ultra-high field using a wireless RF array[J/OL]. NMR Biomed, 2024, 37(12): e5224 [2025-05-01]. https://www.ncbi.nlm.nih.gov/pubmed/39082385. DOI: 10.1002/nbm.5224.
[43]
SEO J H, HAN Y J, CHUNG J Y. A comparative study of birdcage RF coil configurations for ultra-high field magnetic resonance imaging[J/OL]. Sensors (Basel), 2022, 22(5): 1741 [2025-05-11]. https://pubmed.ncbi.nlm.nih.gov/35270889/. DOI: 10.3390/s22051741.
[44]
FREIRE M J, MARQUÉS R, TORNERO J. Magnetoinductive metasurface of capacitively-loaded split rings for local field homogenization in a 7 T MRI birdcage: a simulation study[J/OL]. J Magn Reson, 2023, 357: 107586 [2025-05-01]. https://www.ncbi.nlm.nih.gov/pubmed/37944423. DOI: 10.1016/j.jmr.2023.107586.
[45]
VERGARA GOMEZ T S, DUBOIS M, GLYBOVSKI S, et al. Wireless coils based on resonant and nonresonant coupled-wire structure for small animal multinuclear imaging[J/OL]. NMR Biomed, 2019, 32(5): e4079 [2025-05-06]. https://www.ncbi.nlm.nih.gov/pubmed/30773725. DOI: 10.1002/nbm.4079.
[46]
ZENG X C, CHEN L L, WANG C, et al. Wireless MRI colonoscopy for sensitive imaging of vascular walls[J/OL]. Sci Rep, 2017, 7: 4228 [2025-05-14]. https://www.ncbi.nlm.nih.gov/pubmed/28652614. DOI: 10.1038/s41598-017-03902-7.
[47]
LIU Y, XIAO X, KONG X Z, et al. Domino volumetric metamaterial resonator for very-low-field MRI[J]. Med Phys, 2025, 52(5): 2874-2886. DOI: 10.1002/mp.17726.
[48]
KONG X H, ZHANG Y N, WU J M, et al. Signal-to-noise ratio enhancement method for ultra-low field magnetic resonance imaging based on low-frequency surface metamaterials[J]. Trans China Electrotech Soc, 2024, 39(13): 3917-3927. DOI: 10.19595/j.cnki.1000-6753.tces.L10029.
[49]
KONG X H, ZHU Y M, SHEN S, et al. A low-cost portable 50 mT MRI scanner for dental imaging[J/OL]. IEEE Trans Instrum Meas, 2023, 73: 4503111 [2025-05-11]. https://ieeexplore.ieee.org/document/10304156/. DOI: 10.1109/TIM.2023.3329089.
[50]
RADOJEWSKI P, PIREDDA G F, BONANNO G, et al. Assessment of the available evidence for the use of 7-Tesla (T) magnetic resonance imaging (MRI) in neurological and musculoskeletal disorders, with comparison tox 3-T and 1.5-T MRI: a systematic scoping review[J/OL]. Eur J Neurol, 2025, 32(1): e16557 [2025-05-02]. https://www.ncbi.nlm.nih.gov/pubmed/39676509. DOI: 10.1111/ene.16557.
[51]
ZHU X, WU K, ANDERSON S W, et al. Helmholtz coil-inspired volumetric wireless resonator for magnetic resonance imaging[J/OL]. Adv Mater Technol, 2023, 8(22): 2301053 [2025-05-02]. https://doi.org/10.1002/admt.202301053. DOI: 10.1002/admt.202301053.
[52]
RAMESH T V, NARONGRIT F W, RISPOLI J V. Adaptable, wearable, and stretchable coils: a review[J]. Magn Reson Med, 2025, 93(5): 2186-2208. DOI: 10.1002/mrm.30428.
[53]
ZHU X, WU K, ANDERSON S W, et al. Metamaterial-enabled hybrid receive coil for enhanced magnetic resonance imaging capabilities[J/OL]. Adv Sci (Weinh), 2025, 12(3): e2410907 [2025-05-02]. https://advanced.onlinelibrary.wiley.com/doi/10.1002/advs.202410907. DOI: 10.1002/advs.202410907.
[54]
XIAO L, YUAN J H, XIE J F. A compact MRI spectrometer using optical fiber transmission for multichannel signal acquisition[J]. IEEE Sens J, 2025, 25(4): 7276-7290. DOI: 10.1109/JSEN.2024.3524451.
[55]
OVERSON D K, BRESTICKER J, WILLEY D, et al. Numerical simulations of an integrated radio-frequency/wireless coil design for simultaneous acquisition and wireless transfer of magnetic resonance imaging data[J/OL]. Phys Med Biol, 2023, 68(12): 125003 [2025-05-11]. https://pubmed.ncbi.nlm.nih.gov/37192635/. DOI: 10.1088/1361-6560/acd614.

PREV Clinical application and research advances of magnetic resonance-guided focused ultrasound in central nervous system diseases
NEXT Advances in MRI wireless coil
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn