Share:
Share this content in WeChat
X
Special Focus
Review on the value of cardiac magnetic resonance in the early assessment of cardiovascular diseases
YANG Shujuan  XU Lei 

DOI:10.12015/issn.1674-8034.2025.11.001.


[Abstract] In recent years, cardiovascular disease has shown a trend toward earlier onset and increasingly insidious progression, often reaching an irreversible stage by the time clinical symptoms appear. Early identification of pre-clinical abnormalities and timely intervention are therefore essential for improving patient outcomes. Cardiac magnetic resonance (CMR), as a noninvasive, radiation-free, and multiparametric imaging technique, possesses a unique advantage in sensitively detecting myocardial injury and plays a pivotal role in the diagnosis and prognostic assessment of cardiovascular diseases. However, current domestic research on CMR mainly focuses on clinically manifest diseases, while the early assessment of cardiovascular diseases at preclinical or subclinical stages has received insufficient attention. This review summarizes recent advances in CMR research on pre-clinical myocardial abnormalities, and explores its potential in early diagnosis and precision clinical management, with the aim of informing future clinical research and translational practice.
[Keywords] cardiac magnetic resonance;cardiovascular diseases;pre-clinical stage;subclinical;early diagnosis

YANG Shujuan   XU Lei*  

Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China

Corresponding author: XU L, E-mail: leixu2001@hotmail.com

Conflicts of interest   None.

Received  2025-08-20
Accepted  2025-11-03
DOI: 10.12015/issn.1674-8034.2025.11.001
DOI:10.12015/issn.1674-8034.2025.11.001.

[1]
VIRANI S S, ALONSO A, APARICIO H J, et al. Heart disease and stroke statistics-2021 update: a report from the American heart association[J/OL]. Circulation, 2021, 143(8): e254-e743 [2025-08-19]. https://pubmed.ncbi.nlm.nih.gov/33501848/. DOI: 10.1161/CIR.0000000000000950.
[2]
SCOTT J, AGARWALA A, BAKER-SMITH C M, et al. Cardiovascular health in the transition from adolescence to emerging adulthood: a scientific statement from the American heart association[J/OL]. J Am Heart Assoc, 2025, 14(9): e039239 [2025-08-19]. https://pubmed.ncbi.nlm.nih.gov/40135400/. DOI: 10.1161/JAHA.124.039239.
[3]
REDFIELD M M. Heart failure with preserved ejection fraction[J]. N Engl J Med, 2016, 375(19): 1868-1877. DOI: 10.1056/nejmcp1511175.
[4]
THYGESEN K, ALPERT J S, JAFFE A S, et al. Fourth universal definition of myocardial infarction (2018)[J]. J Am Coll Cardiol, 2018, 72(18): 2231-2264. DOI: 10.1016/j.jacc.2018.08.1038.
[5]
ARNETT D K, BLUMENTHAL R S, ALBERT M A, et al. 2019 ACC/AHA guideline on the primary prevention of cardiovascular disease: a report of the American college of cardiology/American heart association task force on clinical practice guidelines[J/OL]. Circulation, 2019, 140(11): e596-e646 [2025-08-19]. https://pubmed.ncbi.nlm.nih.gov/30879355/. DOI: 10.1161/CIR.0000000000000678.
[6]
ZHAO S H. Brief comment on imaging mimicking pathology of heart diseases[J]. Chin J Magn Reson Imag, 2020, 11(10): 841-842. DOI: 10.12015/issn.1674-8034.2020.10.001.
[7]
LU M J, ZHU L Y, PRASAD S K, et al. Magnetic resonance imaging mimicking pathology detects myocardial fibrosis: a door to hope for improving the whole course management[J]. Sci Bull (Beijing), 2023, 68(9): 864-867. DOI: 10.1016/j.scib.2023.04.014.
[8]
VARADARAJAN V, GIDDING S S, WU C, et al. Imaging early life cardiovascular phenotype[J]. Circ Res, 2023, 132(12): 1607-1627. DOI: 10.1161/CIRCRESAHA.123.322054.
[9]
IPEK R, HOLLAND J, CRAMER M, et al. CMR to characterize myocardial structure and function in heart failure with preserved left ventricular ejection fraction[J]. Eur Heart J Cardiovasc Imaging, 2024, 25(11): 1491-1504. DOI: 10.1093/ehjci/jeae224.
[10]
RAJIAH P S, KALISZ K, BRONCANO J, et al. Myocardial strain evaluation with cardiovascular MRI: physics, principles, and clinical applications[J]. Radiographics, 2022, 42(4): 968-990. DOI: 10.1148/rg.210174.
[11]
SMISETH O A, RIDER O, CVIJIC M, et al. Myocardial strain imaging[J]. JACC Cardiovasc Imag, 2025, 18(3): 340-381. DOI: 10.1016/j.jcmg.2024.07.011.
[12]
SCHELBERT E B, HSU L Y, ANDERSON S A, et al. Late gadolinium-enhancement cardiac magnetic resonance identifies postinfarction myocardial fibrosis and the border zone at the near cellular level in ex vivo rat heart[J]. Circ Cardiovasc Imaging, 2010, 3(6): 743-752. DOI: 10.1161/CIRCIMAGING.108.835793.
[13]
PRASAD S K, AKBARI T, BISHOP M J, et al. Late gadolinium enhancement imaging and sudden cardiac death[J]. Eur Heart J, 2025, 46(36): 3555-3568. DOI: 10.1093/eurheartj/ehaf464.
[14]
ZEPPENFELD K, TFELT-HANSEN J, DE RIVA M, et al. 2022 ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death[J]. Eur Heart J, 2022, 43(40): 3997-4126. DOI: 10.1093/eurheartj/ehac262.
[15]
MESSROGHLI D R, MOON J C, FERREIRA V M, et al. Clinical recommendations for cardiovascular magnetic resonance mapping of T1, T2, T2* and extracellular volume: a consensus statement by the Society for Cardiovascular Magnetic Resonance (SCMR) endorsed by the European Association for Cardiovascular Imaging (EACVI)[J/OL]. J Cardiovasc Magn Reson, 2017, 19(1): 75 [2025-08-19]. https://pubmed.ncbi.nlm.nih.gov/28992817/. DOI: 10.1186/s12968-017-0389-8.
[16]
RAJIAH P S, FRANÇOIS C J, LEINER T. Cardiac MRI: state of the art[J/OL]. Radiology, 2023, 307(3): e223008 [2025-08-19]. https://pubmed.ncbi.nlm.nih.gov/37039684/. DOI: 10.1148/radiol.223008.
[17]
CLERC O F, CUDDY S A M, JEROSCH-HEROLD M, et al. Myocardial characteristics, cardiac structure, and cardiac function in systemic light-chain amyloidosis[J]. JACC Cardiovasc Imaging, 2024, 17(11): 1271-1286. DOI: 10.1016/j.jcmg.2024.05.004.
[18]
ZHOU W L, SIN J, YAN A T, et al. Qualitative and quantitative stress perfusion cardiac magnetic resonance in clinical practice: a comprehensive review[J/OL]. Diagnostics (Basel), 2023, 13(3): 524 [2025-08-19]. https://pubmed.ncbi.nlm.nih.gov/36766629/. DOI: 10.3390/diagnostics13030524.
[19]
ZHOU P Y, CHEN X Y, ZHAO S H. Diagnosing coronary microvascular dysfunction in patients with non-obstructive coronary artery disease by stress cardiac magnetic resonance[J]. Chin Med J (Engl), 2025, 138(5): 601-603. DOI: 10.1097/CM9.0000000000003472.
[20]
KU M C, KOBER F, LAI Y C, et al. Cardiovascular magnetic resonance detects microvascular dysfunction in a mouse model of hypertrophic cardiomyopathy[J/OL]. J Cardiovasc Magn Reson, 2021, 23(1): 63 [2025-08-19]. https://pubmed.ncbi.nlm.nih.gov/34053450/. DOI: 10.1186/s12968-021-00754-z.
[21]
ALKHALIFAH B. Quantitative imaging for early detection and risk stratification of cardiovascular disease using 4D flow MRI and arterial spin labelling[J]. Bioinformation, 2024, 20(12): 1769-1775. DOI: 10.6026/9732063002001769.
[22]
NIELLES-VALLESPIN S, SCOTT A, FERREIRA P, et al. Cardiac diffusion: technique and practical applications[J]. J Magn Reson Imaging, 2020, 52(2): 348-368. DOI: 10.1002/jmri.26912.
[23]
DALL'ARMELLINA E, ENNIS D B, AXEL L, et al. Cardiac diffusion-weighted and tensor imaging: a consensus statement from the special interest group of the society for cardiovascular magnetic resonance[J/OL]. J Cardiovasc Magn Reson, 2025, 27(1): 101109 [2025-08-19]. https://pubmed.ncbi.nlm.nih.gov/39442672/. DOI: 10.1016/j.jocmr.2024.101109.
[24]
YURISTA S R, EDER R A, KWON D H, et al. Magnetic resonance imaging of cardiac metabolism in heart failure: how far have we come?[J]. Eur Heart J Cardiovasc Imaging, 2022, 23(10): 1277-1289. DOI: 10.1093/ehjci/jeac121.
[25]
AIMO A, HUANG L, TYLER A, et al. Quantitative susceptibility mapping (QSM) of the cardiovascular system: challenges and perspectives[J/OL]. J Cardiovasc Magn Reson, 2022, 24(1): 48 [2025-08-19]. https://pubmed.ncbi.nlm.nih.gov/35978351/. DOI: 10.1186/s12968-022-00883-z.
[26]
TYLER A, HUANG L, KUNZE K, et al. Characterization of quantitative susceptibility mapping in the left ventricular myocardium[J/OL]. J Cardiovasc Magn Reson, 2024, 26(1): 101000 [2025-08-19]. https://pubmed.ncbi.nlm.nih.gov/38237902/. DOI: 10.1016/j.jocmr.2024.101000.
[27]
WARNICA W, AL-ARNAWOOT A, STANIMIROVIC A, et al. Clinical impact of cardiac MRI T1 and T2 parametric mapping in patients with suspected cardiomyopathy[J]. Radiology, 2022, 305(2): 319-326. DOI: 10.1148/radiol.220067.
[28]
KAMP N J, CHERY G, KOSINSKI A S, et al. Risk stratification using late gadolinium enhancement on cardiac magnetic resonance imaging in patients with hypertrophic cardiomyopathy: a systematic review and meta-analysis[J/OL]. Prog Cardiovasc Dis, 2021, 66: 10-16 [2025-08-19]. https://pubmed.ncbi.nlm.nih.gov/33171204/. DOI: 10.1016/j.pcad.2020.11.001.
[29]
JOY G, MOON J C, LOPES L R. Detection of subclinical hypertrophic cardiomyopathy[J]. Nat Rev Cardiol, 2023, 20(6): 369-370. DOI: 10.1038/s41569-023-00853-7.
[30]
LORENZINI M, NORRISH G, FIELD E, et al. Penetrance of hypertrophic cardiomyopathy in sarcomere protein mutation carriers[J]. J Am Coll Cardiol, 2020, 76(5): 550-559. DOI: 10.1016/j.jacc.2020.06.011.
[31]
HUURMAN R, VAN DER VELDE N, SCHINKEL A F L, et al. Contemporary family screening in hypertrophic cardiomyopathy: the role of cardiovascular magnetic resonance[J]. Eur Heart J Cardiovasc Imaging, 2022, 23(9): 1144-1154. DOI: 10.1093/ehjci/jeac099.
[32]
ROWIN E J, MARON M S. Cardiovascular magnetic resonance for screening in hypertrophic cardiomyopathy: the new family plan[J]. Eur Heart J Cardiovasc Imaging, 2022, 23(9): 1155-1156. DOI: 10.1093/ehjci/jeac126.
[33]
TOPRICEANU C C, MOON J C, AXELSSON RAJA A, et al. Phenotypic spectrum of subclinical sarcomere-related hypertrophic cardiomyopathy and transition to overt disease[J/OL]. Circ Genom Precis Med, 2024, 17(4): e004580 [2025-08-19]. https://pubmed.ncbi.nlm.nih.gov/38910555/. DOI: 10.1161/CIRCGEN.124.004580.
[34]
VIGNEAULT D M, YANG E, JENSEN P J, et al. Left ventricular strain is abnormal in preclinical and overt hypertrophic cardiomyopathy: cardiac MR feature tracking[J]. Radiology, 2019, 290(3): 640-648. DOI: 10.1148/radiol.2018180339.
[35]
XU J, ZHUANG B Y, SIRAJUDDIN A, et al. MRI T1 mapping in hypertrophic cardiomyopathy: evaluation in patients without late gadolinium enhancement and hemodynamic obstruction[J]. Radiology, 2020, 294(2): 275-286. DOI: 10.1148/radiol.2019190651.
[36]
HO C Y, ABBASI S A, NEILAN T G, et al. T1 measurements identify extracellular volume expansion in hypertrophic cardiomyopathy sarcomere mutation carriers with and without left ventricular hypertrophy[J]. Circ Cardiovasc Imaging, 2013, 6(3): 415-422. DOI: 10.1161/CIRCIMAGING.112.000333.
[37]
JOY G, KELLY C I, WEBBER M, et al. Microstructural and microvascular phenotype of sarcomere mutation carriers and overt hypertrophic cardiomyopathy[J]. Circulation, 2023, 148(10): 808-818. DOI: 10.1161/CIRCULATIONAHA.123.063835.
[38]
RAMAN B, TUNNICLIFFE E M, CHAN K, et al. Association between sarcomeric variants in hypertrophic cardiomyopathy and myocardial oxygenation: insights from a novel oxygen-sensitive cardiovascular magnetic resonance approach[J]. Circulation, 2021, 144(20): 1656-1658. DOI: 10.1161/CIRCULATIONAHA.121.054015.
[39]
LOPES L R, HO C Y, ELLIOTT P M. Genetics of hypertrophic cardiomyopathy: established and emerging implications for clinical practice[J]. Eur Heart J, 2024, 45(30): 2727-2734. DOI: 10.1093/eurheartj/ehae421.
[40]
IOANNOU A, PATEL R K, RAZVI Y, et al. Impact of earlier diagnosis in cardiac ATTR amyloidosis over the course of 20 years[J]. Circulation, 2022, 146(22): 1657-1670. DOI: 10.1161/CIRCULATIONAHA.122.060852.
[41]
CAMELI M, PIERONI M, PASTORE M C, et al. The role of cardiovascular multimodality imaging in the evaluation of Anderson-Fabry disease: from early diagnosis to therapy monitoring[J]. Eur Heart J Cardiovasc Imaging, 2025, 26(5): 814-829. DOI: 10.1093/ehjci/jeaf038.
[42]
DEL FRANCO A, IANNACCONE G, MEUCCI M C, et al. Clinical staging of Anderson-fabry cardiomyopathy: an operative proposal[J]. Heart Fail Rev, 2024, 29(2): 431-444. DOI: 10.1007/s10741-023-10370-x.
[43]
BERNARDINI A, CAMPOREALE A, PIERONI M, et al. Atrial dysfunction assessed by cardiac magnetic resonance as an early marker of fabry cardiomyopathy[J]. JACC Cardiovasc Imaging, 2020, 13(10): 2262-2264. DOI: 10.1016/j.jcmg.2020.05.011.
[44]
BAGGIANO A, BOLDRINI M, MARTINEZ-NAHARRO A, et al. Noncontrast magnetic resonance for the diagnosis of cardiac amyloidosis[J]. JACC Cardiovasc Imag, 2020, 13(1): 69-80. DOI: 10.1016/j.jcmg.2019.03.026.
[45]
WECHALEKAR A D, FONTANA M, QUARTA C C, et al. AL amyloidosis for cardiologists: awareness, diagnosis, and future prospects: JACC: CardioOncology state-of-the-art review[J]. JACC CardioOncol, 2022, 4(4): 427-441. DOI: 10.1016/j.jaccao.2022.08.009.
[46]
HU M, LI B W, SONG Z W, et al. Advances in cardiac magnetic resonance imaging of cardiomyopathy associated with metabolic abnormalities[J]. Chin J Magn Reson Imag, 2025, 16(8): 194-200. DOI: 10.12015/issn.1674-8034.2025.08.029.
[47]
MARCUS F I, MCKENNA W J, SHERRILL D, et al. Diagnosis of arrhythmogenic right ventricular cardiomyopathy/dysplasia: proposed modification of the task force criteria[J]. Circulation, 2010, 121(13): 1533-1541. DOI: 10.1161/CIRCULATIONAHA.108.840827.
[48]
DONG Z X, DAI L L, SONG Y Y, et al. Right ventricular strain derived from cardiac MRI feature tracking for the diagnosis and prognosis of arrhythmogenic right ventricular cardiomyopathy[J/OL]. Radiol Cardiothorac Imaging, 2024, 6(3): e230292 [2025-08-19]. https://pubmed.ncbi.nlm.nih.gov/38842456/. DOI: 10.1148/ryct.230292.
[49]
TAHA K, BOURFISS M, RIELE A S J M TE, et al. A head-to-head comparison of speckle tracking echocardiography and feature tracking cardiovascular magnetic resonance imaging in right ventricular deformation[J]. Eur Heart J Cardiovasc Imaging, 2021, 22(8): 950-958. DOI: 10.1093/ehjci/jeaa088.
[50]
SONG Y Y, LI L, CHEN X Y, et al. Left ventricular longitudinal dyssynchrony by CMR feature tracking is related to adverse prognosis in advanced arrhythmogenic cardiomyopathy[J/OL]. Front Cardiovasc Med, 2021, 8: 712832 [2025-08-19]. https://pubmed.ncbi.nlm.nih.gov/34708081/. DOI: 10.3389/fcvm.2021.712832.
[51]
TADIC M, KERSTEN J, NITA N, et al. The prognostic importance of right ventricular longitudinal strain in patients with cardiomyopathies, connective tissue diseases, coronary artery disease, and congenital heart diseases[J/OL]. Diagnostics, 2021, 11(6): 954 [2025-08-19]. https://www.mdpi.com/2075-4418/11/6/954. DOI: 10.3390/diagnostics11060954.
[52]
CORRADO D, ANASTASAKIS A, BASSO C, et al. Proposed diagnostic criteria for arrhythmogenic cardiomyopathy: European Task Force consensus report[J/OL]. Int J Cardiol, 2024, 395: 131447 [2025-08-19]. https://pubmed.ncbi.nlm.nih.gov/37844667/. DOI: 10.1016/j.ijcard.2023.131447.
[53]
CHEN X Y, LI L, CHENG H B, et al. Early left ventricular involvement detected by cardiovascular magnetic resonance feature tracking in arrhythmogenic right ventricular cardiomyopathy: the effects of left ventricular late gadolinium enhancement and right ventricular dysfunction[J/OL]. J Am Heart Assoc, 2019, 8(17): e012989 [2025-08-19]. https://pubmed.ncbi.nlm.nih.gov/31441357/. DOI: 10.1161/JAHA.119.012989.
[54]
YU S Q, CHEN X Y, DONG Z X, et al. T1 mapping for identifying the substrate in patients with apparently idiopathic premature ventricular complexes[J]. JACC Clin Electrophysiol, 2023, 9(6): 751-761. DOI: 10.1016/j.jacep.2022.12.012.
[55]
COMMITTEE W, DRAZNER M H, BOZKURT B, et al. 2024 ACC expert consensus decision pathway on strategies and criteria for the diagnosis and management of myocarditis: a report of the American college of cardiology solution set oversight committee[J]. J Am Coll Cardiol, 2025, 85(4): 391-431. DOI: 10.1016/j.jacc.2024.10.080.
[56]
LI S, DUAN X J, FENG G X, et al. Multiparametric cardiovascular magnetic resonance in acute myocarditis: comparison of 2009 and 2018 lake louise criteria with endomyocardial biopsy confirmation[J/OL]. Front Cardiovasc Med, 2021, 8: 739892 [2025-08-19]. https://pubmed.ncbi.nlm.nih.gov/34712710/. DOI: 10.3389/fcvm.2021.739892.
[57]
DANIELS C J, RAJPAL S, GREENSHIELDS J T, et al. Prevalence of clinical and subclinical myocarditis in competitive athletes with recent SARS-CoV-2 infection: results from the big ten COVID-19 cardiac registry[J]. JAMA Cardiol, 2021, 6(9): 1078-1087. DOI: 10.1001/jamacardio.2021.2065.
[58]
ISAAK A, KRAVCHENKO D, MESROPYAN N, et al. Layer-specific strain analysis with cardiac MRI feature tracking in acute myocarditis[J/OL]. Radiol Cardiothorac Imaging, 2022, 4(3): e210318 [2025-08-19]. https://pubmed.ncbi.nlm.nih.gov/35833169/. DOI: 10.1148/ryct.210318.
[59]
EICHHORN C, GREULICH S, BUCCIARELLI-DUCCI C, et al. Multiparametric cardiovascular magnetic resonance approach in diagnosing, monitoring, and prognostication of myocarditis[J]. JACC Cardiovasc Imaging, 2022, 15(7): 1325-1338. DOI: 10.1016/j.jcmg.2021.11.017.
[60]
DOERNER J, BUNCK A C, MICHELS G, et al. Incremental value of cardiovascular magnetic resonance feature tracking derived atrial and ventricular strain parameters in a comprehensive approach for the diagnosis of acute myocarditis[J/OL]. Eur J Radiol, 2018, 104: 120-128 [2025-08-19]. https://pubmed.ncbi.nlm.nih.gov/29857857/. DOI: 10.1016/j.ejrad.2018.05.012.
[61]
LUO S, DOU W Q, SCHOEPF U J, et al. Cardiovascular magnetic resonance imaging in myocardial involvement of systemic lupus erythematosus[J]. Trends Cardiovasc Med, 2023, 33(6): 346-354. DOI: 10.1016/j.tcm.2022.02.002.
[62]
HAN D, MILLER R J H, OTAKI Y, et al. Diagnostic accuracy of cardiovascular magnetic resonance for cardiac transplant rejection[J]. JACC Cardiovasc Imag, 2021, 14(12): 2337-2349. DOI: 10.1016/j.jcmg.2021.05.008.
[63]
XU S F, WANG Z X, ZHAO S, et al. Value of cardiac magnetic resonance feature tracking technique in evaluating cardiac function during chemotherapy in breast cancer patients[J]. Chin J Magn Reson Imag, 2024, 15(5):87-93. DOI: 10.12015/issn.1674-8034.2024.05.015.
[64]
SANDHU V K, WEI J, THOMSON L E J, et al. Five-year follow-up of coronary microvascular dysfunction and coronary artery disease in systemic lupus erythematosus: results from a community-based lupus cohort[J]. Arthritis Care Res (Hoboken), 2020, 72(7): 882-887. DOI: 10.1002/acr.23920.
[65]
KAZMIRCZAK F, NIJJAR P S, ZHANG L, et al. Safety and prognostic value of regadenoson stress cardiovascular magnetic resonance imaging in heart transplant recipients[J/OL]. J Cardiovasc Magn Reson, 2019, 21(1): 9 [2025-08-19]. https://pubmed.ncbi.nlm.nih.gov/30674318/. DOI: 10.1186/s12968-018-0515-2.
[66]
MAZNYCZKA A, PRENDERGAST B, DWECK M, et al. Timing of aortic valve intervention in the management of aortic stenosis[J]. JACC Cardiovasc Interv, 2024, 17(21): 2502-2514. DOI: 10.1016/j.jcin.2024.08.046.
[67]
AJMONE MARSAN N, DELGADO V, SHAH D J, et al. Valvular heart disease: shifting the focus to the myocardium[J]. Eur Heart J, 2023, 44(1): 28-40. DOI: 10.1093/eurheartj/ehac504.
[68]
BULL S, WHITE S K, PIECHNIK S K, et al. Human non-contrast T1 values and correlation with histology in diffuse fibrosis[J]. Heart, 2013, 99(13): 932-937. DOI: 10.1136/heartjnl-2012-303052.
[69]
LOGANATH K, CRAIG N J, EVERETT R J, et al. Early intervention in patients with asymptomatic severe aortic stenosis and myocardial fibrosis: the EVOLVED randomized clinical trial[J]. JAMA, 2025, 333(3): 213-221. DOI: 10.1001/jama.2024.22730.
[70]
DOBSON L E, MUSA T A, UDDIN A, et al. Acute reverse remodelling after transcatheter aortic valve implantation: a link between myocardial fibrosis and left ventricular mass regression[J]. Can J Cardiol, 2016, 32(12): 1411-1418. DOI: 10.1016/j.cjca.2016.04.009.
[71]
FERNÁNDEZ-GOLFÍN C, HINOJAR-BAYDES R, GONZÁLEZ-GÓMEZ A, et al. Prognostic implications of cardiac magnetic resonance feature tracking derived multidirectional strain in patients with chronic aortic regurgitation[J]. Eur Radiol, 2021, 31(7): 5106-5115. DOI: 10.1007/s00330-020-07651-6.
[72]
NEDKOFF L, BRIFFA T, ZEMEDIKUN D, et al. Global trends in atherosclerotic cardiovascular disease[J]. Clin Ther, 2023, 45(11): 1087-1091. DOI: 10.1016/j.clinthera.2023.09.020.
[73]
NAGEL E, CHANDRASHEKHAR Y. Stress-only CMR[J]. JACC Cardiovasc Imaging, 2020, 13(5): 1296-1298. DOI: 10.1016/j.jcmg.2020.04.001.
[74]
RIJLAARSDAM-HERMSEN D, LO-KIOENG-SHIOE M, VAN DOMBURG R T, et al. Stress-only adenosine CMR improves diagnostic yield in stable symptomatic patients with coronary artery calcium[J]. JACC Cardiovasc Imaging, 2020, 13(5): 1152-1160. DOI: 10.1016/j.jcmg.2019.12.009.
[75]
TIES D, VAN DORP P, PUNDZIUTE G, et al. Early detection of obstructive coronary artery disease in the asymptomatic high-risk population: objectives and study design of the EARLY-SYNERGY trial[J/OL]. Am Heart J, 2022, 246: 166-177 [2025-08-19]. https://pubmed.ncbi.nlm.nih.gov/35038412/. DOI: 10.1016/j.ahj.2022.01.005.
[76]
FENT G J, GARG P, FOLEY J R J, et al. The utility of global longitudinal strain in the identification of prior myocardial infarction in patients with preserved left ventricular ejection fraction[J]. Int J Cardiovasc Imaging, 2017, 33(10): 1561-1569. DOI: 10.1007/s10554-017-1138-7.
[77]
YU S Q, ZHOU J Y, YANG K, et al. Correlation of myocardial strain and late gadolinium enhancement by cardiac magnetic resonance after a first anterior ST-segment elevation myocardial infarction[J/OL]. Front Cardiovasc Med, 2021, 8: 705487 [2025-08-19]. https://pubmed.ncbi.nlm.nih.gov/34277744/. DOI: 10.3389/fcvm.2021.705487.
[78]
REN J, WU N N, WANG S Y, et al. Obesity cardiomyopathy: evidence, mechanisms, and therapeutic implications[J]. Physiol Rev, 2021, 101(4): 1745-1807. DOI: 10.1152/physrev.00030.2020.
[79]
SHEN M T, GUO Y K, LIU X, et al. Impact of BMI on left atrial strain and abnormal atrioventricular interaction in patients with type 2 diabetes mellitus: a cardiac magnetic resonance feature tracking study[J]. J Magn Reson Imaging, 2022, 55(5): 1461-1475. DOI: 10.1002/jmri.27931.
[80]
LI X N, LIU Y T, KANG S, et al. Interdependence between myocardial deformation and perfusion in patients with T2DM and HFpEF: a feature-tracking and stress perfusion CMR study[J/OL]. Cardiovasc Diabetol, 2024, 23(1): 303 [2025-08-19]. https://pubmed.ncbi.nlm.nih.gov/39152461/. DOI: 10.1186/s12933-024-02380-2.
[81]
LI L, CHEN X Y, YIN G, et al. Early detection of left atrial dysfunction assessed by CMR feature tracking in hypertensive patients[J]. Eur Radiol, 2020, 30(2): 702-711. DOI: 10.1007/s00330-019-06397-0.
[82]
KURUVILLA S, JANARDHANAN R, ANTKOWIAK P, et al. Increased extracellular volume and altered mechanics are associated with LVH in hypertensive heart disease, not hypertension alone[J]. JACC Cardiovasc Imaging, 2015, 8(2): 172-180. DOI: 10.1016/j.jcmg.2014.09.020.
[83]
LI X M, SHI K, JIANG L, et al. Assessment of subclinical LV myocardial dysfunction in T2DM patients with diabetic peripheral neuropathy: a cardiovascular magnetic resonance study[J/OL]. Cardiovasc Diabetol, 2024, 23(1): 217 [2025-08-19]. https://pubmed.ncbi.nlm.nih.gov/38915040/. DOI: 10.1186/s12933-024-02307-x.
[84]
CAO Y K, ZENG W J, CUI Y, et al. Increased myocardial extracellular volume assessed by cardiovascular magnetic resonance T1 mapping and its determinants in type 2 diabetes mellitus patients with normal myocardial systolic strain[J/OL]. Cardiovasc Diabetol, 2018, 17(1): 7 [2025-08-19]. https://pubmed.ncbi.nlm.nih.gov/29301529/. DOI: 10.1186/s12933-017-0651-2.
[85]
PANG Y Q, WAN N, GUO R, et al. Application of cardiac magnetic resonance tissue tracking and T1 mapping technology in the assessment of diabetic myocardial injury[J]. Chin J Magn Reson Imag, 2025, 16(9): 82-89. DOI: 10.12015/issn.1674-8034.2025.09.013.
[86]
ZHAO H, HUANG R, JIANG M, et al. Myocardial tissue-level characteristics of adults with metabolically healthy obesity[J]. JACC Cardiovasc Imaging, 2023, 16(7): 889-901. DOI: 10.1016/j.jcmg.2023.01.022.
[87]
ZHAO W J, LI K, TANG L T, et al. Coronary microvascular dysfunction and diffuse myocardial fibrosis in patients with type 2 diabetes using quantitative perfusion MRI[J]. J Magn Reson Imaging, 2024, 60(6): 2395-2406. DOI: 10.1002/jmri.29296.
[88]
SØRENSEN M H, BOJER A S, BROADBENT D A, et al. Cardiac perfusion, structure, and function in type 2 diabetes mellitus with and without diabetic complications[J]. Eur Heart J Cardiovasc Imaging, 2020, 21(8): 887-895. DOI: 10.1093/ehjci/jez266.
[89]
CRANE J D, JOY G, KNOTT K D, et al. The impact of bariatric surgery on coronary microvascular function assessed using automated quantitative perfusion CMR[J]. JACC Cardiovasc Imaging, 2024, 17(11): 1305-1316. DOI: 10.1016/j.jcmg.2024.05.022.
[90]
WU Y S, BAO M Y, ZHANG L X, et al. Advances in research on the application of cardiac magnetic resonance imaging in the subclinical stage of diabetic cardiomyopathy[J]. Chin J Magn Reson Imag, 2025, 16(4): 168-173. DOI: 10.12015/issn.1674-8034.2025.04.027.
[91]
CONSORTIUM A B, ZHANG W W, CHE Y, et al. A biomarker framework for cardiac aging: the Aging Biomarker Consortium consensus statement[J/OL]. Life Med, 2023, 2(5): lnad035 [2025-08-19]. https://pubmed.ncbi.nlm.nih.gov/39872891/. DOI: 10.1093/lifemedi/lnad035.
[92]
LIU C Y, LIU Y C, WU C, et al. Evaluation of age-related interstitial myocardial fibrosis with cardiac magnetic resonance contrast-enhanced T1 mapping: MESA (Multi-Ethnic Study of Atherosclerosis)[J]. J Am Coll Cardiol, 2013, 62(14): 1280-1287. DOI: 10.1016/j.jacc.2013.05.078.
[93]
GRASSOW L, GRÖSCHEL J, SAAD H, et al. Sex-specific structural and functional cardiac remodeling during healthy aging assessed by cardiovascular magnetic resonance[J/OL]. Clin Res Cardiol, 2024 [2025-08-19]. https://link.springer.com/article/10.1007/s00392-024-02430-5. DOI: 10.1007/s00392-024-02430-5.
[94]
MAO R, WANG F, ZHONG Y, et al. Association of biological age acceleration with cardiac morphology, function, and incident heart failure: insights from UK Biobank participants[J]. Eur Heart J Cardiovasc Imaging, 2024, 25(9): 1315-1323. DOI: 10.1093/ehjci/jeae126.
[95]
RAISI-ESTABRAGH Z, MCCRACKEN C, HANN E, et al. Incident clinical and mortality associations of myocardial native T1 in the UK biobank[J]. JACC Cardiovasc Imaging, 2023, 16(4): 450-460. DOI: 10.1016/j.jcmg.2022.06.011.
[96]
MELONI A, NICOLA M, POSITANO V, et al. Myocardial T2 values at 1.5 T by a segmental approach with healthy aging and gender[J]. Eur Radiol, 2022, 32(5): 2962-2975. DOI: 10.1007/s00330-021-08396-6.
[97]
BÖNNER F, JANZARIK N, JACOBY C, et al. Myocardial T2 mapping reveals age- and sex-related differences in volunteers[J/OL]. J Cardiovasc Magn Reson, 2015, 17(1): 9 [2025-08-19]. https://pubmed.ncbi.nlm.nih.gov/25656484/. DOI: 10.1186/s12968-015-0118-0.
[98]
GHANBARI F, MORALES M A, STREET J A, et al. Free-breathing, highly accelerated, single-beat, multisection cardiac cine MRI with generative artificial intelligence[J/OL]. Radiol Cardiothorac Imaging, 2025, 7(2): e240272 [2025-08-19]. https://pubmed.ncbi.nlm.nih.gov/40178397/. DOI: 10.1148/ryct.240272.
[99]
CHEUNG H C, VIMALESVARAN K, ZAMAN S, et al. Automating quality control in cardiac magnetic resonance: Artificial intelligence for discriminative assessment of planning and motion artifacts and real-time reacquisition guidance[J/OL]. J Cardiovasc Magn Reson, 2024, 26(2): 101067 [2025-08-19]. https://pubmed.ncbi.nlm.nih.gov/39079601/. DOI: 10.1016/j.jocmr.2024.101067.
[100]
WANG Y J, YANG K, WEN Y, et al. Screening and diagnosis of cardiovascular disease using artificial intelligence-enabled cardiac magnetic resonance imaging[J]. Nat Med, 2024, 30(5): 1471-1480. DOI: 10.1038/s41591-024-02971-2.
[101]
ASSADI H S, ZHAO X D, MATTHEWS G, et al. Cardiovascular magnetic resonance imaging markers of ageing: a multi-centre, cross-sectional cohort study[J/OL]. Eur Heart J Open, 2025, 5(3): oeaf032 [2025-08-19]. https://pubmed.ncbi.nlm.nih.gov/40322642/. DOI: 10.1093/ehjopen/oeaf032.
[102]
LANG M, BERNIER A, KNOPPERS B M. Artificial intelligence in cardiovascular imaging: "unexplainable" legal and ethical challenges?[J]. Can J Cardiol, 2022, 38(2): 225-233. DOI: 10.1016/j.cjca.2021.10.009.
[103]
SENGUPTA P P, CHANDRASHEKHAR Y. From conventional deep learning to GPT: AI's emergent power for cardiac imaging[J]. JACC Cardiovasc Imaging, 2023, 16(8): 1129-1131. DOI: 10.1016/j.jcmg.2023.07.001.

PREV Advances in MRI wireless coil
NEXT Application of radiomics prognostic models based on cardiac magnetic resonance in patients with heart failure with reduced ejection fraction
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn