Share:
Share this content in WeChat
X
Special Focus
Correlation and diagnostic value of left ventricular entropy based on late gadolinium enhancement and myocardial fibrosis imaging markers with heart failure with preserved ejection fraction
YANG Xianglin  WANG Wenxian  GAO Yan  WANG Linxiang  XUE Runjie  LI He  WANG Ximing 

DOI:10.12015/issn.1674-8034.2025.11.004.


[Abstract] Objective To explore the correlation between left ventricular entropy (LV entropy) based on cardiac magnetic resonance (CMR) late gadolinium enhancement (LGE) and myocardial fibrosis imaging markers including Native T1 mapping and extracellular volume fraction (ECV) in patients with heart failure with preserved ejection fraction (HFpEF), as well as its diagnostic value for these patients.Materials and Methods A total of 150 patients diagnosed with HFpEF at Shandong Provincial Hospital between May 2019 and April 2023 were retrospectively included in the study. They were divided into two groups based on the presence of late gadolinium enhancement regions[the LGE (+) group (110 cases) and the LGE (-) group (40 cases)]. Additionally, 59 healthy individuals were selected as the control group.They were randomly split into the training set and validation set at an 8∶2 ratio. The Spearman correlation coefficient was used to examine the relationship between Native T1 mapping, ECV and LV entropy. The diagnostic efficacy of different parameters was assessed by receiver operating characteristic (ROC) curves.Results LV entropy was moderately positively correlated with both Native T1 mapping and ECV (r = 0.48, r = 0.68, respectively; P < 0.001) in all patients. In subgroups of patients with positive LGE, LV entropy was moderately positively correlated with Native T1 mapping, and strongly correlated with ECV (r = 0.57, r = 0.74, respectively; P < 0.001). In subgroups of patients with negative LGE, LV entropy moderately positively correlated with ECV (r = 0.36; P = 0.024), but not significantly correlated with Native T1 mapping. ROC curve analysis showed that in both the training set and the validation set, the diagnostic efficacy of left ventricular entropy was higher than that of Native T1 mapping and ECV. The AUC values were 0.895, 0.732, 0.748 (for the training set) and 0.893, 0.731, 0.747 (for the validation set), respectively. The AUC values of the combined model of the three parameters were 0.916 (training set) and 0.914 (validation set), respectively. The DeLong test showed that the diagnostic performance was improved after the combined of CMR parameters (P < 0.05).Conclusions Left ventricular entropy derived from CMR-LGE can characterize extracellular space heterogeneity. It provides supplementary value to traditional imaging markers of myocardial fibrosis in detecting pathological changes in patients with HFpEF, and also exhibits certain diagnostic value for these patients.
[Keywords] cardiac magnetic resonance;late gadolinium enhancement;left ventricular entropy;T1 mapping;extracellular volume fraction;heart failure

YANG Xianglin1, 2   WANG Wenxian2, 3   GAO Yan2   WANG Linxiang1   XUE Runjie4   LI He1   WANG Ximing1, 2*  

1 Medical Integration and Practice Center of Shandong University, Jinan 250012, China

2 Department of Radiology, Shandong Provincial Hospital, Jinan 250021, China

3 Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan 250117, China

4 School of Medical Imaging, Binzhou Medical University, Yantai 264003, China

Corresponding author: WANG X M, E-mail: wxming369@163.com

Conflicts of interest   None.

Received  2025-08-20
Accepted  2025-11-06
DOI: 10.12015/issn.1674-8034.2025.11.004
DOI:10.12015/issn.1674-8034.2025.11.004.

[1]
National Center for Cardiovascular Diseases, China National Heart Failure Society, Chinese Heart Failure Association of Chinese Medical Doctor Association, Editorial Board of Chinese Journal of Heart Fai, et al. China national heart failure guideline 2023[J]. Chin J Heart Fail Cardiomyopathy, 2023(4): 215-311. DOI: 10.3969/j.issn.1000-3614.2023.12.001.
[2]
KHAN M S, SHAHID I, BENNIS A, et al. Global epidemiology of heart failure[J]. Nat Rev Cardiol, 2024, 21(10): 717-734. DOI: 10.1038/s41569-024-01046-6.
[3]
KANAGALA P, LEE J, KHAN-KHEIL M M, et al. Role of cardiac magnetic resonance imaging in heart failure[J]. Kardiol Pol, 2022, 80(3): 251-253. DOI: 10.33963/KP.a2022.0026.
[4]
GONZÁLEZ A, SCHELBERT E B, DÍEZ J, et al. Myocardial interstitial fibrosis in heart failure: biological and translational perspectives[J]. J Am Coll Cardiol, 2018, 71(15): 1696-1706. DOI: 10.1016/j.jacc.2018.02.021.
[5]
LI S, ZHOU D, SIRAJUDDIN A, et al. T1 mapping and extracellular volume fraction in dilated cardiomyopathy: a prognosis study[J]. JACC Cardiovasc Imaging, 2022, 15(4): 578-590. DOI: 10.1016/j.jcmg.2021.07.023.
[6]
UNGER A, GAROT J, TOUPIN S, et al. Prognostic value of cardiac MRI late gadolinium enhancement granularity in participants with ischemic cardiomyopathy[J/OL]. Radiology, 2025, 314(1): e240806 [2025-08-19]. https://pubmed.ncbi.nlm.nih.gov/39772797/. DOI: 10.1148/radiol.240806.
[7]
WANG X, PU J. Recent advances in cardiac magnetic resonance for imaging of acute myocardial infarction[J/OL]. Small Meth, 2024, 8(3): 2301170 [2025-02-05]. https://pubmed.ncbi.nlm.nih.gov/37992241/. DOI: 10.1002/smtd.202301170.
[8]
ZHANG H Y, ZHU L Y, ZHAO S H, et al. Research progresses of cardiac magnetic resonance in 2022[J]. Chin J Magn Reson Imag, 2023, 14(6): 133-138, 144. DOI: 10.12015/ISn.1674-8034.2023.06.024.
[9]
ZHANG X J, YANG S M, HAO S L, et al. Myocardial fibrosis and prognosis in heart failure with preserved ejection fraction: a pooled analysis of 12 cohort studies[J]. Eur Radiol, 2024, 34(3): 1854-1862. DOI: 10.1007/s00330-023-10218-w.
[10]
CADOUR F, QUEMENEUR M, BIERE L, et al. Prognostic value of cardiovascular magnetic resonance T1 mapping and extracellular volume fraction in nonischemic dilated cardiomyopathy[J/OL]. J Cardiovasc Magn Reson, 2023, 25(1): 7 [2025-08-19]. https://pubmed.ncbi.nlm.nih.gov/36747201/. DOI: 10.1186/s12968-023-00919-y.
[11]
FRANGOGIANNIS N G. Cardiac fibrosis[J]. Cardiovasc Res, 2021, 117(6): 1450-1488. DOI: 10.1093/cvr/cvaa324.
[12]
KAWEL-BOEHM N, HETZEL S J, AMBALE-VENKATESH B, et al. Reference ranges ("normal values") for cardiovascular magnetic resonance (CMR) in adults and children: 2020 update[J/OL]. J Cardiovasc Magn Reson, 2020, 22(1): 87 [2025-08-19]. https://pubmed.ncbi.nlm.nih.gov/33308262/. DOI: 10.1186/s12968-020-00683-3.
[13]
ANTIOCHOS P, GE Y, VAN DER GEEST R J, et al. Entropy as a measure of myocardial tissue heterogeneity in patients with ventricular arrhythmias[J]. JACC Cardiovasc Imag, 2022, 15(5): 783-792. DOI: 10.1016/j.jcmg.2021.12.003.
[14]
WU K C, CHRISPIN J. More than meets the eye: cardiac magnetic resonance image entropy and ventricular arrhythmia risk prediction[J]. JACC Cardiovasc Imaging, 2022, 15(5): 793-795. DOI: 10.1016/j.jcmg.2022.01.012.
[15]
YE Y, JI Z P, ZHOU W L, et al. Mean scar entropy by late gadolinium enhancement cardiac magnetic resonance is associated with ventricular arrhythmias events in hypertrophic cardiomyopathy[J/OL]. Front Cardiovasc Med, 2021, 8: 758635 [2025-08-19]. https://pubmed.ncbi.nlm.nih.gov/34869672/. DOI: 10.3389/fcvm.2021.758635.
[16]
ZHAO X Y, JIN F W, WANG J, et al. Entropy of left ventricular late gadolinium enhancement and its prognostic value in hypertrophic cardiomyopathy a new CMR assessment method[J/OL]. Int J Cardiol, 2023, 373: 134-141 [2025-08-19]. https://www.internationaljournalofcardiology.com/article/S0167-5273(22)01704-1/abstract. DOI: 10.1016/j.ijcard.2022.11.017.
[17]
ZHENG Y, MA Y T, SHA L H, et al. Prediction of MACE in patients with hypertrophic cardiomyopathy by left ventricular entropy based on CMR-LGE image[J]. J Clin Radiol, 2024, 43(2): 217-222. DOI: 10.13437/j.cnki.jcr.2024.02.016.
[18]
SHU S L, WANG C, HONG Z M, et al. Prognostic value of late enhanced cardiac magnetic resonance imaging derived texture features in dilated cardiomyopathy patients with severely reduced ejection fractions[J/OL]. Front Cardiovasc Med, 2021, 8: 766423 [2025-08-19]. https://pubmed.ncbi.nlm.nih.gov/34977183/. DOI: 10.3389/fcvm.2021.766423.
[19]
MUTHALALY R G, KWONG R Y, JOHN R M, et al. Left ventricular entropy is a novel predictor of arrhythmic events in patients with dilated cardiomyopathy receiving defibrillators for primary prevention[J]. JACC Cardiovasc Imaging, 2019, 12(7Pt 1): 1177-1184. DOI: 10.1016/j.jcmg.2018.07.003.
[20]
WU K C. Bringing order to disorder: is image entropy the answer?[J]. JACC Cardiovasc Imaging, 2019, 12(7Pt 1): 1185-1187. DOI: 10.1016/j.jcmg.2018.07.002.
[21]
XUE H, KELLMAN P, LAROCCA G, et al. High spatial and temporal resolution retrospective cine cardiovascular magnetic resonance from shortened free breathing real-time acquisitions[J/OL]. J Cardiovasc Magn Reson, 2013, 15(1): 102 [2025-08-19]. https://pubmed.ncbi.nlm.nih.gov/24228930/. DOI: 10.1186/1532-429X-15-102.
[22]
KELLMAN P, LARSON A C, HSU L Y, et al. Motion-corrected free-breathing delayed enhancement imaging of myocardial infarction[J]. Magn Reson Med, 2005, 53(1): 194-200. DOI: 10.1002/mrm.20333.
[23]
MESSROGHLI D R, RADJENOVIC A, KOZERKE S, et al. Modified Look-Locker inversion recovery (MOLLI) for high-resolution T1 mapping of the heart[J]. Magn Reson Med, 2004, 52(1): 141-146. DOI: 10.1002/mrm.20110.
[24]
CERQUEIRA M D, WEISSMAN N J, DILSIZIAN V, et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association[J]. J Nucl Cardiol, 2002, 9(2): 240-245. DOI: 10.1067/mnc.2002.123122.
[25]
SCHULZ-MENGER J, BLUEMKE D A, BREMERICH J, et al. Standardized image interpretation and post-processing in cardiovascular magnetic resonance - 2020 update: Society for Cardiovascular Magnetic Resonance (SCMR): Board of Trustees Task Force on Standardized Post-Processing[J/OL]. J Cardiovasc Magn Reson, 2020, 22(1): 19 [2025-08-19]. https://pubmed.ncbi.nlm.nih.gov/32160925/. DOI: 10.1186/s12968-020-00610-6.
[26]
ARHEDEN H, SAEED M, HIGGINS C B, et al. Reperfused rat myocardium subjected to various durations of ischemia: estimation of the distribution volume of contrast material with echo-planar MR imaging[J]. Radiology, 2000, 215(2): 520-528. DOI: 10.1148/radiology.215.2.r00ma38520.
[27]
ANDROULAKIS A F A, ZEPPENFELD K, PAIMAN E H M, et al. Entropy as a novel measure of myocardial tissue heterogeneity for prediction of ventricular arrhythmias and mortality in post-infarct patients[J]. JACC Clin Electrophysiol, 2019, 5(4): 480-489. DOI: 10.1016/j.jacep.2018.12.005.
[28]
WANG W X, GAO Y, WANG J, et al. Left ventricular entropy is a novel predictor of major adverse cardiac events (MACE) in patients with coronary atherosclerosis: a multi-center study[J]. Eur Radiol, 2024, 34(5): 3411-3421. DOI: 10.1007/s00330-023-10362-3.
[29]
NAKAMORI S, AMYAR A, FAHMY A S, et al. Cardiovascular magnetic resonance radiomics to identify components of the extracellular matrix in dilated cardiomyopathy[J]. Circulation, 2024, 150(1): 7-18. DOI: 10.1161/CIRCULATIONAHA.123.067107.
[30]
NAKAMORI S, DOHI K, ISHIDA M, et al. Native T1 mapping and extracellular volume mapping for the assessment of diffuse myocardial fibrosis in dilated cardiomyopathy[J]. JACC Cardiovasc Imaging, 2018, 11(1): 48-59. DOI: 10.1016/j.jcmg.2017.04.006.
[31]
YANG Z, YAO F Y, LONG Y T, et al. Association between cardiac dysfunction and late gadolinium enhancement confined to the LV intramural region in patients with hypertrophic cardiomyopathy[J/OL]. Ann Med, 2025, 57(1): 2533425 [2025-08-19]. https://pubmed.ncbi.nlm.nih.gov/40698385/. DOI: 10.1080/07853890.2025.2533425.
[32]
MONGEON F P, JEROSCH-HEROLD M, COELHO-FILHO O R, et al. Quantification of extracellular matrix expansion by CMR in infiltrative heart disease[J]. JACC Cardiovasc Imaging, 2012, 5(9): 897-907. DOI: 10.1016/j.jcmg.2012.04.006.
[33]
SCHELBERT E B, HSU L Y, ANDERSON S A, et al. Late gadolinium-enhancement cardiac magnetic resonance identifies postinfarction myocardial fibrosis and the border zone at the near cellular level in ex vivo rat heart[J]. Circ Cardiovasc Imaging, 2010, 3(6): 743-752. DOI: 10.1161/CIRCIMAGING.108.835793.
[34]
BROWN L A E, WAHAB A, IKONGO E, et al. Cardiovascular magnetic resonance phenotyping of heart failure with mildly reduced ejection fraction[J]. Eur Heart J Cardiovasc Imaging, 2022, 24(1): 38-45. DOI: 10.1093/ehjci/jeac204.

PREV Value of in vivo cardiac diffusion tensor imaging in characterizing the myocardial microstructure of hypertrophic cardiomyopathy
NEXT CMR-derived rapid long-axis strain in predicting extensive myocardial fibrosis in hypertrophic cardiomyopathy
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn