Share:
Share this content in WeChat
X
Special Focus
CMR-derived rapid long-axis strain in predicting extensive myocardial fibrosis in hypertrophic cardiomyopathy
CHEN Zixian  YANG Na  NAN Jiang  ZHANG Yaping  XU Lei  LEI Junqiang 

DOI:10.12015/issn.1674-8034.2025.11.005.


[Abstract] Objective To investigate the correlation between left ventricular fast long-axis strain (FLAS) measured from cardiac magnetic resonance (CMR) cine sequences and extensive late gadolinium enhancement (LGE) in patients with hypertrophic cardiomyopathy (HCM), and to compare its predictive value for extensive myocardial fibrosis against global longitudinal strain (GLS).Materials and Methods A retrospective analysis was conducted on clinical baseline data and CMR imaging from 131 patients diagnosed with HCM and 75 age- and sex-matched normal controls at the First Hospital of Lanzhou University between January 2017 and January 2021. Patients were divided into extensive LGE and non-extensive LGE groups based on LGE extent. FLAS parameter was measured from the two- and four-chamber left ventricular cine sequences. Pearson correlation analysis was used to explore the relationship between FLAS and LGE extent. Univariate and multivariate logistic regression analyses were employed to assess the association between FLAS and LGE. The diagnostic performance of FLAS for identifying extensive LGE was evaluated using receiver operating characteristic (ROC) curve analysis.Results Patients in the extensive LGE group were younger [(52 ± 11) years vs. (57 ± 13) years, P = 0.025)], had higher diastolic blood pressure [(79 ± 10) mmHg vs. (74 ± 12) mmHg, P = 0.016], and showed a statistically significant lower incidence of hypertension (27.3% vs. 51.7%, P = 0.008) compared to the non-extensive LGE group. FLAS was significantly lower in the extensive LGE group [( -9.24% ± 2.73%) vs. (-12.41% ± 2.84%), P < 0.001)] and a moderate negative correlation was observed between LGE extent and FLAS (r = -0.497, P < 0.001). ROC curve analysis showed that the area under the curve (AUC) for FLAS in identifying extensive LGE was 0.802, which was significantly superior to GLS (AUC = 0.709) and traditional CMR parameters (LVMi, LVESVi, LVEF, and MLVT, with AUCs of 0.626, 0.703, 0.725, and 0.702, respectively). Multivariate regression analysis further confirmed FLAS as an independent predictor of extensive LGE (OR = 1.497, 95% CI: 1.550 to 2.663, P < 0.001).Conclusions As a novel contrast-agent-free CMR functional parameter, FLAS demonstrates superior performance to GLS and traditional parameters in identifying extensive myocardial fibrosis in HCM patients. It holds promise as a non-invasive tool for myocardial fibrosis assessment, serving as an alternative to LGE, especially in patients with contraindications to gadolinium contrast or renal insufficiency.
[Keywords] hypertrophic cardiomyopathy;cardiac magnetic resonance;fast long-axis strain;myocardial fibrosis;late gadolinium enhancement

CHEN Zixian1   YANG Na1   NAN Jiang1   ZHANG Yaping1   XU Lei2   LEI Junqiang1*  

1 Department of Radiology, the First Hospital of Lanzhou University, the First School of Clinical Medicine, Lanzhou 730000, China

2 Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China

Corresponding author: LEI J Q, E-mail: leijq2011@126.com

Conflicts of interest   None.

Received  2025-08-07
Accepted  2025-10-27
DOI: 10.12015/issn.1674-8034.2025.11.005
DOI:10.12015/issn.1674-8034.2025.11.005.

[1]
MARON B J, DESAI M Y, NISHIMURA R A, et al. Diagnosis and evaluation of hypertrophic cardiomyopathy JACC state-of-the-art review[J]. J Am Coll Cardiol, 2022, 79(4): 372-389. DOI: 10.1016/j.jacc.2021.12.002.
[2]
OMMEN S R, MITAL S, BURKE M A, et al. 2020 AHA/ACC guideline for the diagnosis and treatment of patients with hypertrophic cardiomyopathy: executive summary: a report of the American college of cardiology/American heart association joint committee on clinical practice guidelines[J/OL]. Circulation, 2020, 142(25): e533-e557 [2025-08-06]. https://pubmed.ncbi.nlm.nih.gov/33215938/. DOI: 10.1161/CIR.0000000000000938.
[3]
HABIB M, ADLER A, FARDFINI K, et al. Progression of myocardial fibrosis in hypertrophic cardiomyopathy: a cardiac magnetic resonance study[J]. JACC Cardiovasc Imaging, 2021, 14(5): 947-958. DOI: 10.1016/j.jcmg.2020.09.037.
[4]
SCHLITTLER M, PRAMSTALLER P P, ROSSINI A, et al. Myocardial fibrosis in hypertrophic cardiomyopathy: a perspective from fibroblasts[J/OL]. Int J Mol Sci, 2023, 24(19): 14845 [2025-08-06]. https://pubmed.ncbi.nlm.nih.gov/37834293/. DOI: 10.3390/ijms241914845.
[5]
RAPHAEL C E, MITCHELL F, KANAGANAYAGAM G S, et al. Cardiovascular magnetic resonance predictors of heart failure in hypertrophic cardiomyopathy: the role of myocardial replacement fibrosis and the microcirculation[J/OL]. J Cardiovasc Magn Reson, 2021, 23(1): 26 [2025-08-06]. https://pubmed.ncbi.nlm.nih.gov/33685501/. DOI: 10.1186/s12968-021-00720-9.
[6]
LUMISH H S, LIANG L W, HASEGAWA K, et al. Prediction of worsening heart failure in hypertrophic cardiomyopathy using plasma proteomics[J]. Heart, 2023, 109(24): 1837-1843. DOI: 10.1136/heartjnl-2023-322644.
[7]
LISI M, CAMELI M, MANDOLI G E, et al. Detection of myocardial fibrosis by speckle-tracking echocardiography: from prediction to clinical applications[J]. Heart Fail Rev, 2022, 27(5): 1857-1867. DOI: 10.1007/s10741-022-10214-0.
[8]
HANNEMAN K. The clinical significance of cardiac MRI late gadolinium enhancement in hypertrophic cardiomyopathy[J]. Radiology, 2022, 302(2): 307-308. DOI: 10.1148/radiol.2021212214.
[9]
AQUARO G D, TODIERE G, BARISON A, et al. Prognostic role of the progression of late gadolinium enhancement in hypertrophic cardiomyopathy[J/OL]. Am J Cardiol, 2024, 211: 199-208 [2025-08-06]. https://pubmed.ncbi.nlm.nih.gov/37949342/. DOI: 10.1016/j.amjcard.2023.11.003.
[10]
IYAD N, AHMAD M S, ALKHATIB S G, et al. Gadolinium contrast agents- challenges and opportunities of a multidisciplinary approach: Literature review[J/OL]. Eur J Radiol Open, 2023, 11: 100503 [2025-08-06]. https://pubmed.ncbi.nlm.nih.gov/37456927/. DOI: 10.1016/j.ejro.2023.100503.
[11]
XU J, YANG W J, ZHAO S H, et al. State-of-the-art myocardial strain by CMR feature tracking: clinical applications and future perspectives[J]. Eur Radiol, 2022, 32(8): 5424-5435. DOI: 10.1007/s00330-022-08629-2.
[12]
PEZESHKI P S, GHORASHI S M, HOUSHMAND G, et al. Feature tracking cardiac magnetic resonance imaging to assess cardiac manifestations of systemic diseases[J]. Heart Fail Rev, 2023, 28(5): 1189-1199. DOI: 10.1007/s10741-023-10321-6.
[13]
HU X, BAO Y W, ZHU Y, et al. Predicting left ventricular myocardial fibrosis in patients with hypertrophic cardiomyopathy by speckle tracking automated functional imaging[J]. Ultrasound Med Biol, 2023, 49(5): 1309-1317. DOI: 10.1016/j.ultrasmedbio.2023.01.020.
[14]
HIEMSTRA Y L, DEBONNAIRE P, BOOTSMA M, et al. Global longitudinal strain and left atrial volume index provide incremental prognostic value in patients with hypertrophic cardiomyopathy[J/OL]. Circ Cardiovasc Imaging, 2017, 10(7): e005706 [2025-08-06]. https://pubmed.ncbi.nlm.nih.gov/28679523/. DOI: 10.1161/CIRCIMAGING.116.005706.
[15]
YANG W J, XU J, ZHU L Y, et al. Myocardial strain measurements derived from MR feature-tracking: influence of sex, age, field strength, and vendor[J]. JACC Cardiovasc Imaging, 2024, 17(4): 364-379. DOI: 10.1016/j.jcmg.2023.05.019.
[16]
LENG S, TAN R S, ZHAO X D, et al. Fast long-axis strain: a simple, automatic approach for assessing left ventricular longitudinal function with cine cardiovascular magnetic resonance[J]. Eur Radiol, 2020, 30(7): 3672-3683. DOI: 10.1007/s00330-020-06744-6.
[17]
SIRY D, RIFFEL J, SALATZKI J, et al. A head-to-head comparison of fast-SENC and feature tracking to LV long axis strain for assessment of myocardial deformation in chest pain patients[J/OL]. BMC Med Imaging, 2022, 22(1): 159 [2025-08-06]. https://pubmed.ncbi.nlm.nih.gov/36064332/. DOI: 10.1186/s12880-022-00886-3.
[18]
LI Y J, XU Y W, TANG S Q, et al. Left atrial function predicts outcome in dilated cardiomyopathy: fast long-axis strain analysis derived from MRI[J]. Radiology, 2022, 302(1): 72-81. DOI: 10.1148/radiol.2021210801.
[19]
WABICH E, DORNIAK K, ZIENCIUK-KRAJKA A, et al. Segmental longitudinal strain as the most accurate predictor of the patchy pattern late gadolinium enhancement in hypertrophic cardiomyopathy[J]. J Cardiol, 2021, 77(5): 475-481. DOI: 10.1016/j.jjcc.2020.11.004.
[20]
MEINDL C, PAULUS M, POSCHENRIEDER F, et al. Patients with acute myocarditis and preserved systolic left ventricular function: comparison of global and regional longitudinal strain imaging by echocardiography with quantification of late gadolinium enhancement by CMR[J]. Clin Res Cardiol, 2021, 110(11): 1792-1800. DOI: 10.1007/s00392-021-01885-0.
[21]
RIFFEL J H, ANDRE F, MAERTENS M, et al. Fast assessment of long axis strain with standard cardiovascular magnetic resonance: a validation study of a novel parameter with reference values[J/OL]. J Cardiovasc Magn Reson, 2015, 17(1): 69 [2025-08-06]. https://pubmed.ncbi.nlm.nih.gov/26253220/. DOI: 10.1186/s12968-015-0171-8.
[22]
YANG F Y, WANG J, LI Y C, et al. The prognostic value of biventricular long axis strain using standard cardiovascular magnetic resonance imaging in patients with hypertrophic cardiomyopathy[J/OL]. Int J Cardiol, 2019, 294: 43-49 [2025-08-06]. https://pubmed.ncbi.nlm.nih.gov/31405582/. DOI: 10.1016/j.ijcard.2019.08.010.
[23]
MEMBERS A F, ELLIOTT P M, ANASTASAKIS A, et al. 2014 ESC Guidelines on diagnosis and management of hypertrophic cardiomyopathy: the Task Force for the Diagnosis and Management of Hypertrophic Cardiomyopathy of the European Society of Cardiology (ESC)[J]. Eur Heart J, 2014, 35(39): 2733-2779. DOI: 10.1093/eurheartj/ehu284.
[24]
SCHUSTER A, BACKHAUS S J, STIERMAIER T, et al. Fast manual long-axis strain assessment provides optimized cardiovascular event prediction following myocardial infarction[J]. Eur Heart J Cardiovasc Imaging, 2019, 20(11): 1262-1270. DOI: 10.1093/ehjci/jez077.
[25]
BOGARAPU S, PUCHALSKI M D, EVERITT M D, et al. Novel cardiac magnetic resonance feature tracking (CMR-FT) analysis for detection of myocardial fibrosis in pediatric hypertrophic cardiomyopathy[J]. Pediatr Cardiol, 2016, 37(4): 663-673. DOI: 10.1007/s00246-015-1329-8.
[26]
LIM C, BLASZCZYK E, RIAZY L, et al. Quantification of myocardial strain assessed by cardiovascular magnetic resonance feature tracking in healthy subjects-influence of segmentation and analysis software[J]. Eur Radiol, 2021, 31(6): 3962-3972. DOI: 10.1007/s00330-020-07539-5.
[27]
FEISST A, KUETTING D L R, DABIR D, et al. Influence of observer experience on cardiac magnetic resonance strain measurements using feature tracking and conventional tagging[J/OL]. IJC Heart Vasc, 2018, 18: 46-51 [2025-08-06]. https://pubmed.ncbi.nlm.nih.gov/29876503/. DOI: 10.1016/j.ijcha.2018.02.007.
[28]
LI Y M, LIU J, CAO Y K, et al. Predictive values of multiple non-invasive markers for myocardial fibrosis in hypertrophic cardiomyopathy patients with preserved ejection fraction[J/OL]. Sci Rep, 2021, 11(1): 4297 [2025-08-06]. https://pubmed.ncbi.nlm.nih.gov/33619345/. DOI: 10.1038/s41598-021-83678-z.
[29]
MAHRHOLDT H, SEITZ A. Refining the prognostic value of LGE in hypertrophic cardiomyopathy: presence, extent, and location-what's next?[J]. JACC Cardiovasc Imaging, 2023, 16(9): 1178-1180. DOI: 10.1016/j.jcmg.2023.04.002.
[30]
ASFOUR I, KARIM S, TABRAIZ S A, et al. Late gadolinium enhancement and electrocardiographic associations in hypertrophic cardiomyopathy[J/OL]. Ann Noninvasive Electrocardiol, 2025, 30(4): e70077 [2025-08-06]. https://pubmed.ncbi.nlm.nih.gov/40464065/. DOI: 10.1111/anec.70077.
[31]
KIAOS A, DASKALOPOULOS G N, KAMPERIDIS V, et al. Quantitative late gadolinium enhancement cardiac magnetic resonance and sudden death in hypertrophic cardiomyopathy: a meta-analysis[J]. JACC Cardiovasc Imaging, 2024, 17(5): 489-497. DOI: 10.1016/j.jcmg.2023.07.005.
[32]
LIU J, ZHAO S H, YU S Q, et al. Patterns of replacement fibrosis in hypertrophic cardiomyopathy[J]. Radiology, 2022, 302(2): 298-306. DOI: 10.1148/radiol.2021210914.
[33]
TODIERE G, NUGARA C, GENTILE G, et al. Prognostic role of late gadolinium enhancement in patients with hypertrophic cardiomyopathy and low-to-intermediate sudden cardiac death risk score[J]. Am J Cardiol, 2019, 124(8): 1286-1292. DOI: 10.1016/j.amjcard.2019.07.023.
[34]
TEDESCHI E, CARANCI F, GIORDANO F, et al. Gadolinium retention in the body: what we know and what we can do[J]. Radiol Med, 2017, 122(8): 589-600. DOI: 10.1007/s11547-017-0757-3.
[35]
GRÜTZEDIEK K, FISCHER R, KURIO G, et al. Rapid MRI assessment of long-axis strain to indicate systolic dysfunction in patients with sickle cell disease[J]. J Magn Reson Imag, 2023, 58(5): 1499-1506. DOI: 10.1002/jmri.28623.
[36]
MĖLINYTĖ-ANKUDAVIČĖ K, MARCINKEVIČIENĖ K, GALNAITIENĖ G, et al. Potential prognostic impact of left-ventricular global longitudinal strain in analysis of whole-heart myocardial mechanics in nonischemic dilated cardiomyopathy[J]. Int J Cardiovasc Imaging, 2024, 40(9): 1941-1949. DOI: 10.1007/s10554-024-03184-x.
[37]
WANG F Q, DENG Y, LI S J, et al. CMR left ventricular strains beyond global longitudinal strain in differentiating light-chain cardiac amyloidosis from hypertrophic cardiomyopathy[J/OL]. Front Cardiovasc Med, 2023, 10: 1108408 [2025-08-06]. https://pubmed.ncbi.nlm.nih.gov/37206101/. DOI: 10.3389/fcvm.2023.1108408.
[38]
SCHUSTER A, HOR K N, KOWALLICK J T, et al. Cardiovascular magnetic resonance myocardial feature tracking: concepts and clinical applications[J/OL]. Circ Cardiovasc Imaging, 2016, 9(4): e004077 [2025-08-06]. https://pubmed.ncbi.nlm.nih.gov/27009468/. DOI: 10.1161/CIRCIMAGING.115.004077.
[39]
ARENJA N, RIFFEL J H, FRITZ T, et al. Diagnostic and prognostic value of long-axis strain and myocardial contraction fraction using standard cardiovascular MR imaging in patients with nonischemic dilated cardiomyopathies[J]. Radiology, 2017, 283(3): 681-691. DOI: 10.1148/radiol.2016161184.
[40]
AURICH M, FUCHS P, MÜLLER-HENNESSEN M, et al. Unidimensional longitudinal strain: a simple approach for the assessment of longitudinal myocardial deformation by echocardiography[J]. J Am Soc Echocardiogr, 2018, 31(6): 733-742. DOI: 10.1016/j.echo.2017.12.010.
[41]
AQUINO G J, DECKER J A, SCHOEPF U J, et al. Feasibility of coronary CT angiography-derived left ventricular long-axis shortening as an early marker of ventricular dysfunction in transcatheter aortic valve replacement[J/OL]. Radiol Cardiothorac Imaging, 2022, 4(3): e210205 [2025-08-06]. https://pubmed.ncbi.nlm.nih.gov/35833168/. DOI: 10.1148/ryct.210205.
[42]
BRANN A, MILLER J, ESHRAGHIAN E, et al. Global longitudinal strain predicts clinical outcomes in patients with heart failure with preserved ejection fraction[J]. Eur J Heart Fail, 2023, 25(10): 1755-1765. DOI: 10.1002/ejhf.2947.
[43]
NAGUEH S F, KHAN S U. Left atrial strain for assessment of left ventricular diastolic function: focus on populations with normal LVEF[J]. JACC Cardiovasc Imaging, 2023, 16(5): 691-707. DOI: 10.1016/j.jcmg.2022.10.011.
[44]
CHOI Y J, KIM H K, HWANG I C, et al. Prognosis of patients with hypertrophic cardiomyopathy and low-normal left ventricular ejection fraction[J]. Heart, 2023, 109(10): 771-778. DOI: 10.1136/heartjnl-2022-321853.
[45]
ZHAO X L, LUO K, MA H H, et al. Influence of heart failure phenotypes on prognosis of patients with hypertrophic cardiomyopathy[J/OL]. Heart Lung, 2025, 74: 12-18[2025-08-06]. https://pubmed.ncbi.nlm.nih.gov/40554115/. DOI: 10.1016/j.hrtlng.2025.05.015.

PREV Correlation and diagnostic value of left ventricular entropy based on late gadolinium enhancement and myocardial fibrosis imaging markers with heart failure with preserved ejection fraction
NEXT Four-dimensional flow magnetic resonance imaging in evaluating ventricular hemodynamic characteristics of ventricular premature contractions in children and its predictive value for load degree
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn