Share:
Share this content in WeChat
X
Clinical Article
Application of 3D-pCASL in evaluating cerebral perfusion and early prognosis in extremely preterm infants with HIBD
FU Yiwei  DING Tan  QIN Chi  WANG Ning  FENG Zhanqi  LIU Xueyan  ZHOU Tian  LU Lin  ZHAO Xin 

DOI:10.12015/issn.1674-8034.2025.11.007.


[Abstract] Objective This study employed three-dimensional pseudo-continuous arterial spin labeling (3D-pCASL) to evaluate the impact of hypoxic-ischemic brain injury (HIBD) on cerebral blood flow (CBF) in extremely preterm infants, and to explore the clinical value of 3D-pCASL in assessing cerebral perfusion and early prognosis of HIBD in these infants.Materials and Methods A total of 110 extremely preterm infants clinically diagnosed with HIBD and born at the Third Affiliated Hospital of Zhengzhou University between January 2022 and September 2024 were retrospectively enrolled as the study group. Additionally, 83 extremely preterm infants without HIBD born during the same period were selected as the control group. All infants underwent 3D-pCASL sequences and conventional MRI scans at different corrected gestational ages (CGA). Participants were stratified by CGA at MRI into Subgroup 1 [CGA 32 to 36⁺⁶ weeks: HIBD (n = 58), control (n = 60)] and Subgroup 2 [CGA 37 to 41⁺⁶ weeks: HIBD (n = 52), control (n = 23)]. CBF values were compared between HIBD and control infants within each subgroup, and across subgroups at different CGAs; specifically, correlations between CBF values in differential brain regions at CGA 32 to 36⁺⁶ weeks and Apgar scores at 1 min and 5 min after birth, as well as Neonatal Behavioral Neurological Assessment (NBNA) scores at 40 weeks CGA were analyzed.Results (1) At CGA 32 to 36⁺⁶ weeks, CBF values in the HIBD group were significantly higher than controls in bilateral temporal lobes, parietal lobes, occipital lobes, basal ganglia regions, thalami, and the right central sulcus cortex (P < 0.05); however, no statistically significant differences in regional CBF values were observed between the HIBD and control groups at CGA 37 to 41⁺⁶ weeks. (2) Within the HIBD group, CBF values in bilateral central sulcus cortices were significantly higher at CGA 37 to 41⁺⁶ weeks compared to CGA 32 to 36⁺⁶ weeks (P < 0.05), with no significant differences in other regions of interest (P > 0.05). In controls, CBF values in bilateral temporal lobes, occipital lobes, basal ganglia regions, and central sulcus cortices were significantly elevated at CGA 37 to 41⁺⁶ weeks versus CGA 32 to 36⁺⁶ weeks (P < 0.05), while other regions showed no significant changes (P > 0.05). (3) The CBF values in various regions of interest showed no correlation with 1-min and 5-min Apgar scores at birth. Additionally, bilateral thalamic and left basal ganglia region CBF at CGA 32 to 36⁺⁶ weeks negatively correlated with NBNA scores at 40 weeks of CGA (r = -0.284, -0.292, -0.272; P < 0.05).Conclusions The occurrence of HIBD may affect early cerebral perfusion in extremely preterm infants. Altered perfusion in specific brain regions could influence early prognosis, and 3D-pCASL holds potential value in assessing cerebral perfusion changes and early prognosis in these infants following HIBD.
[Keywords] preterm infant;hypoxic-Ischemic brain damage;magnetic resonance imaging;arterial spin labeling;cerebral blood flow;neonatal behavioral neurological assessment;Apgar score

FU Yiwei1, 2, 3   DING Tan1, 2, 3   QIN Chi1, 2, 3   WANG Ning1, 2, 3   FENG Zhanqi1, 2, 3   LIU Xueyan1, 2, 3   ZHOU Tian1, 2, 3   LU Lin1, 2, 3   ZHAO Xin1, 2, 3*  

1 Department of Medical Imaging, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China

2 Henan International Joint Laboratory of Neuroimaging, Zhengzhou 450052, China

3 Henan Provincial Key Laboratory of Pediatric Neuroimaging Medicine, Zhengzhou 450052, China

Corresponding author: ZHAO X, E-mail: zdsfyzx@zzu.edu.cn

Conflicts of interest   None.

Received  2025-07-01
Accepted  2025-10-09
DOI: 10.12015/issn.1674-8034.2025.11.007
DOI:10.12015/issn.1674-8034.2025.11.007.

[1]
DE VIS J B, HENDRIKSE J, PETERSEN E T, et al. Arterial spin-labelling perfusion MRI and outcome in neonates with hypoxic-ischemic encephalopathy[J]. Eur Radiol, 2015, 25(1): 113-121. DOI: 10.1007/s00330-014-3352-1.
[2]
LIU L, OZA S, HOGAN D, et al. Global, regional, and national causes of child mortality in 2000-13, with projections to inform post-2015 priorities: an updated systematic analysis[J]. Lancet, 2015, 385(9966): 430-440. DOI: 10.1016/s0140-6736(14)61698-6.
[3]
GBD 2021 Nervous System Disorders Collaborators. Global, regional, and national burden of disorders affecting the nervous system, 1990-2021: a systematic analysis for the Global Burden of Disease Study 2021[J]. Lancet Neurol, 2024, 23(4): 344-381. DOI: 10.1016/s1474-4422(24)00038-3.
[4]
CALABRESE E, WU Y, SCHEFFLER A W, et al. Correlating Quantitative MRI-based Apparent Diffusion Coefficient Metrics with 24-month Neurodevelopmental Outcomes in Neonates from the HEAL Trial[J/OL]. Radiology, 2023, 308(3): e223262 [2025-07-01]. https://pubs.rsna.org/doi/10.1148/radiol.223262. DOI: 10.1148/radiol.223262.
[5]
SUTIN J, VYAS R, FELDMAN H A, et al. Association of cerebral metabolic rate following therapeutic hypothermia with 18-month neurodevelopmental outcomes after neonatal hypoxic ischemic encephalopathy[J/OL]. EBioMedicine, 2023, 94: 104673 [2025-07-01]. https://www.thelancet.com/journals/ebiom/article/PIIS2352-3964(23)00238-4/fulltext. DOI: 10.1016/j.ebiom.2023.104673.
[6]
KROMM G H, PATANKAR H, NAGALOTIMATH S, et al. Socioemotional and Psychological Outcomes of Hypoxic-Ischemic Encephalopathy: A Systematic Review[J/OL]. Pediatrics, 2024, 153(4): e2023063399 [2025-07-01]. https://publications.aap.org/pediatrics/article/153/4/e2023063399/196823. DOI: 10.1542/peds.2023-063399.
[7]
DROMMELSCHMIDT K, MAYRHOFER T, HÜNING B, et al. Incidence of brain injuries in a large cohort of very preterm and extremely preterm infants at term-equivalent age: results of a single tertiary neonatal care center over 10 years[J]. Eur Radiol, 2024, 34(8): 5239-5249. DOI: 10.1007/s00330-024-10592-z.
[8]
RISTOVSKA S, STOMNAROSKA O, DANILOVSKI D. Hypoxic Ischemic Encephalopathy (HIE) in Term and Preterm Infants[J]. Pril (Makedon Akad Nauk Umet Odd Med Nauki), 2022, 43(1): 77-84. DOI: 10.2478/prilozi-2022-0013.
[9]
PICCIRILLI E, CHIARELLI A M, SESTIERI C, et al. Cerebral blood flow patterns in preterm and term neonates assessed with pseudo-continuous arterial spin labeling perfusion MRI[J]. Hum Brain Mapp, 2023, 44(9): 3833-3844. DOI: 10.1002/hbm.26315.
[10]
HU Z, JIANG D, SHEPARD J, et al. High-Fidelity MRI Assessment of Cerebral Perfusion in Healthy Neonates Less Than 1 Week of Age[J/OL]. J Magn Reson Imaging, 2025 [2025-06-22]. https://onlinelibrary.wiley.com/doi/10.1002/jmri.29745. DOI: 10.1002/jmri.29740.
[11]
TUURA R O, KOTTKE R, BROTSCHI B, et al. Elevated cerebral perfusion in neonatal encephalopathy is associated with neurodevelopmental impairments[J/OL]. Pediatr Res, 2024 [2025-06-22]. https://www.nature.com/articles/s41390-024-03553-1. DOI: 10.1038/s41390-024-03553-1.
[12]
CAO J, MU Y, XU X, et al. Cerebral perfusion changes of the basal ganglia and thalami in full-term neonates with hypoxic-ischaemic encephalopathy: a three-dimensional pseudo continuous arterial spin labelling perfusion magnetic resonance imaging study[J]. Pediatr Radiol, 2022, 52(8): 1559-1567. DOI: 10.1007/s00247-022-05344-4.
[13]
LIU C, JI H X, TIAN Y H, et al. Value of 3D arterial spin labeling in early diagnosis and prognostic grouping of full-term neonatal hypoxic-ischemic encephalopathy[J]. Chin J Magn Reson Imaging, 2023, 14(1): 61-66, 76. DOI: 10.12015/issn.1674-8034.2023.01.011.
[14]
LIU Y, HUO R, WANG Z, et al. Research progress of arterial spin labeling imaging in early diagnosis and prognosis evaluation of brain injury in premature infants[J]. Chin J Magn Reson Imaging, 2021, 12(9): 91-94. DOI: 10.12015/issn.1674-8034.2021.09.023.
[15]
LIU X L, YUE X, ZHAO X, et al. DKI Derived Parameters Predict the Prognosis of Neonatal HIE[J]. Journal of Clinical Radiology, 2024, 43(10): 1787-1793. DOI: 10.13437/j.cnki.jcr.2024.10.014.
[16]
WANG J, LI J, YIN X, et al. The Value of Arterial Spin Labeling Imaging in the Classification and Prognostic Evaluation of Neonatal Hypoxic-ischemic Encephalopathy[J]. Curr Neurovasc Res, 2021, 18(3): 307-313. DOI: 10.2174/1567202618666210920112001.
[17]
HO S Y, CHIANG M C, LIN J J, et al. Middle cerebral artery velocity is associated with the severity of MRI brain injury in neonates received therapeutic hypothermia[J]. Biomed J, 2021, 44(6Suppl 1): S119-S125. DOI: 10.1016/j.bj.2020.08.002.
[18]
HUNTINGFORD S L, BOYD S M, MCINTYRE S J, et al. Long-Term Outcomes Following Hypoxic Ischemic Encephalopathy[J]. Clin Perinatol, 2024, 51(3): 683-709. DOI: 10.1016/j.clp.2024.04.008.
[19]
LI S K, CHENG M Y, ZHANG L J, et al. 3D-pCASL in the developmental brain abnormalities of preterm infants born to hypertensive mothers during pregnancy[J]. Chin J Magn Reson Imaging, 2025, 16(2): 7-13. DOI: 10.12015/issn.1674-8034.2025.02.002.
[20]
Quality management and safety management group of Chinese society of radiology, MRI group of Chinese society of radiology. Expert consensus on standardized application of arterial spin labeled cerebral perfusion MRI[J]. Chin J Radiol, 2016, 50(11): 817-824. DOI: 10.3760/cma.j.issn.1005-1201.2016.11.003.
[21]
WANG J, LI J, YIN X, et al. Cerebral hemodynamics of hypoxic-ischemic encephalopathy neonates at different ages detected by arterial spin labeling imaging[J]. Clin Hemorheol Microcirc, 2022, 81(4): 271-279. DOI: 10.3233/ch-211324.
[22]
TANG S L, HE L, LIU B, et al. Three-dimensional arterial spin labeling perfusion imaging combined with post-labeling delay in neonatal hypoxic ischemic encephalopathy[J]. Chin J Med imaging, 2018, 26(12): 928-933. DOI: 10.3969/j.issn.1005-5185.2018.12.012.
[23]
SHEN G, SANCHEZ K, HU S, et al. 3D doppler ultrasound imaging of cerebral blood flow for assessment of neonatal hypoxic-ischemic brain injury in mice[J/OL]. PLoS One, 2023, 18(5): e0285434 [2025-07-01]. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0285434. DOI: 10.1371/journal.pone.0285434.
[24]
HOFFMAN S B, LAKHANI A, VISCARDI R M. The association between carbon dioxide, cerebral blood flow, and autoregulation in the premature infant[J]. J Perinatol, 2021, 41(2): 324-329. DOI: 10.1038/s41372-020-00835-4.
[25]
RANJAN A K, GULATI A. Advances in Therapies to Treat Neonatal Hypoxic-Ischemic Encephalopathy[J/OL]. J Clin Med, 2023, 12(20): 6653 [2025-10-01]. https://www.mdpi.com/2077-0383/12/20/6653. DOI: 10.3390/jcm12206653.
[26]
DUBOIS M, LEGOUHY A, COROUGE I, et al. Multiparametric Analysis of Cerebral Development in Preterm Infants Using Magnetic Resonance Imaging[J/OL]. Front Neurosci, 2021, 15: 658002 [2025-07-01]. https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2021.658002/full. DOI: 10.3389/fnins.2021.658002.
[27]
QIN C, ZHAO X, SHEN Y, et al. Evaluation of the effect of intraventricular haemorrhage on cerebral perfusion in preterm neonates using three-dimensional pseudo-continuous arterial spin labelling[J]. Pediatr Radiol, 2024, 54(5): 776-786. DOI: 10.1007/s00247-024-05865-0.
[28]
MACHIE M, DE VRIES L S, INDER T. Advances in Neuroimaging Biomarkers and Scoring[J]. Clin Perinatol, 2024, 51(3): 629-647. DOI: 10.1016/j.clp.2024.04.005.
[29]
JI X, FAN G G. Continuous arterial spin labeling MR perfusion imaging in diagnosis of hypoxic ischemic encephalopathy in full-term neonates: Preliminary study[J]. Chin J Magn Reson Imaging, 2011, 2(1): 19-23. DOI: 10.3969/j.issn.1674-8034.2011.01.006.
[30]
GIRAULT J B, CORNEA E, GOLDMAN B D, et al. Cortical Structure and Cognition in Infants and Toddlers[J]. Cereb Cortex, 2020, 30(2): 786-800. DOI: 10.1093/cercor/bhz126.
[31]
FAVIÉ L M A, GROENENDAAL F, VAN DEN BROEK M P H, et al. Pharmacokinetics of morphine in encephalopathic neonates treated with therapeutic hypothermia[J/OL]. PLoS One, 2019, 14(2): e0211910 [2025-07-01]. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0211910. DOI: 10.1371/journal.pone.0211910.
[32]
DUBOIS J, ALISON M, COUNSELL S J, et al. MRI of the Neonatal Brain: A Review of Methodological Challenges and Neuroscientific Advances[J]. J Magn Reson Imaging, 2021, 53(5): 1318-1343. DOI: 10.1002/jmri.27192.
[33]
OTANI S, FUSHIMI Y, IWANAGA K, et al. Evaluation of deep gray matter for early brain development using quantitative susceptibility mapping[J]. Eur Radiol, 2023, 33(6): 4488-4499. DOI: 10.1007/s00330-022-09267-4.
[34]
DIPIERO M, RODRIGUES P G, GROMALA A, et al. Applications of advanced diffusion MRI in early brain development: a comprehensive review[J]. Brain Struct Funct, 2023, 228(2): 367-392. DOI: 10.1007/s00429-022-02605-8.
[35]
BAUMANN N, PHAM-DINH D. Biology of oligodendrocyte and myelin in the mammalian central nervous system[J]. Physiol Rev, 2001, 81(2): 871-927. DOI: 10.1152/physrev.2001.81.2.871.
[36]
DUBOIS J, DEHAENE-LAMBERTZ G, KULIKOVA S, et al. The early development of brain white matter: a review of imaging studies in fetuses, newborns and infants[J]. Neuroscience, 2014, 276: 48-71. DOI: 10.1016/j.neuroscience.2013.12.044.
[37]
GOLDSHTEIN I, AMIT G, TSADOK M A, et al. Age-corrected development of preterm children: a population-based study[J]. Pediatr Res, 2025, 97(3): 1001-1008. DOI: 10.1038/s41390-024-03449-0.
[38]
VANES L, FENN-MOLTU S, HADAYA L, et al. Longitudinal neonatal brain development and socio-demographic correlates of infant outcomes following preterm birth[J/OL]. Dev Cogn Neurosci, 2023, 61: 101250 [2025-10-01]. DOI: 10.1016/j.dcn.2023.101250.
[39]
GONDOVÁ A, NEUMANE S, ARICHI T, et al. Early Development and Co-Evolution of Microstructural and Functional Brain Connectomes: A Multi-Modal MRI Study in Preterm and Full-Term Infants[J/OL]. Hum Brain Mapp, 2025, 46(5): e70186 [2025-10-01]. https://onlinelibrary.wiley.com/doi/10.1002/hbm.70186. DOI: 10.1002/hbm.70186.
[40]
TIERRADENTRO-GARCÍA L O, SAADE-LEMUS S, FREEMAN C, et al. Cerebral Blood Flow of the Neonatal Brain after Hypoxic-Ischemic Injury[J]. Am J Perinatol, 2023, 40(5): 475-488. DOI: 10.1055/s-0041-1731278.
[41]
XIE B C, YAN R F, REN J P, et al. Three-Dimensional Arterial Spin Labeling Perfusion Imaging in Full-Term Neonates with Hypoxic Brain Injury After Asphyxia[J]. Chin J Med Imaging, 2022, 30(3): 193-198, 204. DOI: 10.3969/j.issn.1005-5185.2022.03.001.
[42]
HONG J, CRAWFORD K, JARRETT K, et al. Five-minute Apgar score and risk of neonatal mortality, severe neurological morbidity and severe non-neurological morbidity in term infants - an Australian population-based cohort study[J/OL]. Lancet Reg Health West Pac, 2024, 44: 101011 [2025-07-01].https://www.thelancet.com/retrieve/pii/S2666606524000051. DOI: 10.1016/j.lanwpc.2024.101011.
[43]
EHRHARDT H, AUBERT A M, ÅDÉN U, et al. Apgar Score and Neurodevelopmental Outcomes at Age 5 Years in Infants Born Extremely Preterm[J/OL]. JAMA Netw Open, 2023, 6(9): e2332413 [2025-07-01]. https://jamanetwork.com/journals/jamanetworkopen/fullarticle/2808959. DOI: 10.1001/jamanetworkopen.2023.32413.
[44]
LIU C, MESSERLIAN C, CHEN Y J, et al. Trimester-specific associations of maternal exposure to disinfection by-products, oxidative stress, and neonatal neurobehavioral development[J/OL]. Environ Int, 2021, 157: 106838 [2025-07-01]. https://www.sciencedirect.com/science/article/pii/S0160412021004633. DOI: 10.1016/j.envint.2021.106838.
[45]
LU Z H, LIU C, CHEN Y J, et al. Gestational Exposure to PM(2.5) and Specific Constituents, Meconium Metabolites, and Neonatal Neurobehavioral Development: A Cohort Study[J]. Environ Sci Technol, 2024, 58(23): 9980-9990. DOI: 10.1021/acs.est.4c00074.
[46]
GLASS H C, WOOD T R, COMSTOCK B A, et al. Predictors of Death or Severe Impairment in Neonates With Hypoxic-Ischemic Encephalopathy[J/OL]. JAMA Netw Open, 2024, 7(12): e2449188 [2025-07-01]. https://jamanetwork.com/journals/jamanetworkopen/fullarticle/2827551. DOI: 10.1001/jamanetworkopen.2024.49188.
[47]
FAINGOLD R, PREMPUNPONG C, GARFINKLE J, et al. Association between Early Basal Ganglia and Thalami Perfusion Assessed by Color Doppler Ultrasonography and Brain Injury in Infants with Hypoxic-Ischemic Encephalopathy: A Prospective Cohort Study[J/OL]. J Pediatr, 2024, 271: 114086 [2025-07-01]. https://www.jpeds.com/article/S0022-3476(24)00189-6. DOI: 10.1016/j.jpeds.2024.114086.

PREV Four-dimensional flow magnetic resonance imaging in evaluating ventricular hemodynamic characteristics of ventricular premature contractions in children and its predictive value for load degree
NEXT Morphological remodeling of individual structural covariance networks in patients with self-limited epilepsy with centrotemporal spikes
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn