Share:
Share this content in WeChat
X
Clinical Article
Morphological remodeling of individual structural covariance networks in patients with self-limited epilepsy with centrotemporal spikes
ZHOU Tian  ZHAO Xin  SHEN Yanyong  ZHANG Penghua  XU Wuzi  DING Tan  FU Yiwei  LU Lin  ZHANG Xiaoan 

DOI:10.12015/issn.1674-8034.2025.11.008.


[Abstract] Objective To systematically explore the structural remodeling characteristics of the brain in patients with self-limited epilepsy with centrotemporal spikes (SeLECTS) based on individual cortical thickness and surface area structural covariance networks.Materials and Methods A prospective study was conducted from October 2021 to October 2023, collecting data from 46 children diagnosed with SeLECTS based on clinical presentation and electroencephalogram at the Third Affiliated Hospital of Zhengzhou University, along with 46 healthy controls matched for age and gender. All participants underwent 3D-T1-weighted structural MRI scans, and morphological measures (cortical thickness and brain surface area) were obtained through data preprocessing using Freesurfer software. Individual structural covariance network differences were analyzed using the network template perturbation method.Results SeLECTS patients showed significant covariance enhancement in both cortical thickness and surface area structural covariance networks (Pcorrected < 0.05, FWE correction). The thickness covariance network was characterized by widespread interhemispheric synchrony enhancement (Pcorrected < 0.001) and local modular enhancement in the parietal-central region (Pcorrected = 0.005). The surface area covariance network highlighted coordinated enhancement along the limbic-motor-sensory integration pathway (Pcorrected = 0.002) and short-range covariance enhancement in the cingulate and the pars opercularis (Pcorrected = 0.033).Conclusions SeLECTS patients exhibited covariance enhancement across multiple brain regions in both cortical thickness and surface area-based structural covariance networks. These findings provide new neuroimaging evidence for understanding the network-level pathological mechanisms of SeLECTS and reveal potential intervention targets, laying the foundation for the development of personalized precision treatment strategies.
[Keywords] self-limited epilepsy with centrotemporal spikes;magnetic resonance imaging;cortical thickness;cortical surface area;individual structural covariance network

ZHOU Tian1, 2, 3   ZHAO Xin1, 2, 3   SHEN Yanyong4   ZHANG Penghua1, 2, 3   XU Wuzi1, 2, 3   DING Tan1, 2, 3   FU Yiwei1, 2, 3   LU Lin1, 2, 3   ZHANG Xiaoan1, 2, 3*  

1 Department of Medical Imaging, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China

2 Henan International Joint Laboratory of Neuroimaging, Zhengzhou 450052, China

3 Henan Provincial Key Laboratory of Pediatric Neuroimaging Medicine, Zhengzhou 450052, China

4 Department of Medical Imaging, the First People's Hospital of Xiangyang, Xiangyang 441001, China

Corresponding author: ZHANG X A, E-mail: zxa@zzu.edu.cn

Conflicts of interest   None.

Received  2025-08-11
Accepted  2025-10-12
DOI: 10.12015/issn.1674-8034.2025.11.008
DOI:10.12015/issn.1674-8034.2025.11.008.

[1]
SATHYANARAYANA A, ATRACHE R EL, JACKSON M, et al. Nonlinear Analysis of Visually Normal EEGs to Differentiate Benign Childhood Epilepsy with Centrotemporal Spikes (BECTS)[J/OL]. Sci Rep, 2020, 10: 8419 [2025-08-11]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7242341/. DOI: 10.1038/s41598-020-65112-y.
[2]
JONES J E. Functional connectivity differences in speech production networks in Chinese children with Rolandic epilepsy[J/OL]. Epilepsy Behav, 2022, 135: 108871 [2025-08-11]. https://www.sciencedirect.com/science/article/pii/S1525505022003201. DOI: 10.1016/j.yebeh.2022.108871.
[3]
SHE X W, QI W, NIX K C, et al. RepTetitive transcranial magnetic stimulation modulates brain connectivity in children with self-limited epilepsy with centrotemporal spikes[J/OL]. Brain Stimulat, 2025, 18(2): 287 [2025-08-11]. https://pmc.ncbi.nlm.nih.gov/articles/PMC12087383/. DOI: 10.1016/j.brs.2025.02.018.
[4]
ZHANG Z J, WU J, XU D F, et al. Clinical characteristics and immunotherapy efficacy in autoimmune-associated benign epilepsy with centrotemporal spikes: A prospective cohort study[J/OL]. J Neuroimmunol, 2025, 404: 578603 [2025-08-11]. https://www.sciencedirect.com/science/article/pii/S0165572825000839. DOI: 10.1016/j.jneuroim.2025.578603.
[5]
DAI X J, YANG Y, WANG Y J. Correction to: Interictal epileptiform discharges changed epilepsy-related brain network architecture in BECTS[J]. Brain Imaging Behav, 2022, 16(6): 2841-2841. DOI: 10.1007/s11682-022-00725-7.
[6]
HU J, CHEN G Q, ZENG Z, et al. Systematically altered connectome gradient in benign childhood epilepsy with centrotemporal spikes: Potential effect on cognitive function[J/OL]. NeuroImage Clin, 2024, 43: 103628 [2025-08-11]. https://pmc.ncbi.nlm.nih.gov/articles/PMC11201345/. DOI: 10.1016/j.nicl.2024.103628.
[7]
SONG L F, WU G R, ZHANG J R, et al. The changes in brain network functional gradients and dynamic functional connectivity in SeLECTS patients revealing disruptive and compensatory mechanisms in brain networks[J/OL]. Front Psychiatry, 2025, 16: 1584071 [2025-08-11]. https://pmc.ncbi.nlm.nih.gov/articles/PMC12098496/. DOI: 10.3389/fpsyt.2025.1584071.
[8]
LU J, JIANG P L, WANG Y F, et al. The relationship between neuromagnetic networks and cognitive impairment in self‐limited epilepsy with centrotemporal spikes[J]. Epilepsia Open, 2025, 10(3): 842-854. DOI: 10.1002/epi4.70044.
[9]
MERCIER A, DORRIS L. A systematic review of psychosocial interventions for children and young people with epilepsy[J]. Eur J Paediatr Neurol, 2024, 49: 35-44. DOI: 10.1016/j.ejpn.2024.02.002.
[10]
LIU H, CHEN D L, LIU C X, et al. Brain structural changes and molecular analyses in children with benign epilepsy with centrotemporal spikes[J]. Pediatr Res, 2024, 96(1): 184-189. DOI: 10.1038/s41390-024-03118-2.
[11]
YANG Y, WANG F Q, ANDRADE-MACHADO R, et al. Disrupted functional connectivity patterns of the left inferior frontal gyrus subregions in benign childhood epilepsy with centrotemporal spikes[J/OL]. Transl Pediatr, 2022, 11(9): 1552 [2025-08-11]. https://pmc.ncbi.nlm.nih.gov/articles/PMC9561512/. DOI: 10.21037/tp-22-270.
[12]
DUAN D N, WEN D. MRI-based structural covariance network in early human brain development[J/OL]. Front Neurosci, 2023, 17: 1302069 [2025-08-11]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10646325/. DOI: 10.3389/fnins.2023.1302069.
[13]
LIU Y, LI Q J, YI D L, et al. Topological abnormality of structural covariance network in MRI-negative frontal lobe epilepsy[J/OL]. Front Neurosci, 2023, 17: 1136110 [2025-08-11]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10196002/. DOI: 10.3389/fnins.2023.1136110.
[14]
JIANG L, ZHANG T J, LV F J, et al. Structural Covariance Network of Cortical Gyrification in Benign Childhood Epilepsy with Centrotemporal Spikes[J/OL]. Front Neurol, 2018, 9: 10 [2025-08-11]. https://pmc.ncbi.nlm.nih.gov/articles/PMC5807981/. DOI: 10.3389/fneur.2018.00010.
[15]
LI Y N, CHU T P, CHE K L, et al. Altered gray matter structural covariance networks in postpartum depression: a graph theoretical analysis[J]. J Affect Disord, 2021, 293: 159-167. DOI: 10.1016/j.jad.2021.05.018.
[16]
SU S, SHA R H, QIU H S, et al. Altered large‐scale individual‐based morphological brain network in spinocerebellar ataxia type 3[J/OL]. CNS Neurosci Ther, 2023, 29(12): 4102 [2025-08-11]. https://pmc.ncbi.nlm.nih.gov/articles/PMC10651944/. DOI: 10.1111/cns.14332.
[17]
YAN J H, HUANG W J, WANG J, et al. Individual-based morphological brain network and its association with acute mild traumaticbrain injury[J]. Chin J Magn Reson Imaging, 2024, 15(05): 55-60. DOI: 10.12015/issn.1674-8034.2024.05.010.
[18]
YIN Y, QIU X F, NIE L S, et al. Individual-based morphological brain network changes in children with Rolandic epilepsy[J]. Clin Neurophysiol, 2024, 165: 90-96. DOI: 10.1016/j.clinph.2024.06.013.
[19]
LIU Z W, PALANIYAPPAN L, WU X R, et al. Resolving heterogeneity in schizophrenia through a novel systems approach to brain structure: individualized structural covariance network analysis[J]. Mol Psychiatry, 2021, 26(12): 7719-7731. DOI: 10.1038/s41380-021-01229-4.
[20]
FISHER R S, CROSS J H, FRENCH J A, et al. Operational classification of seizure types by the International League Against Epilepsy: Position Paper of the ILAE Commission for Classification and Terminology[J]. Epilepsia, 2017, 58(4): 522-530. DOI: 10.1111/epi.13670.
[21]
DESIKAN R S, SÉGONNE F, FISCHL B, et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest[J]. NeuroImage, 2006, 31(3): 968-980. DOI: 10.1016/j.neuroimage.2006.01.021.
[22]
DIAO Z Y, WANG H Z, WU D L, et al. Mesial temporal lobe epilepsy: revealing the abnormal patterns of individual structural covariance networks[J]. J Pract Radiol, 2025, 41(4): 539-543. DOI: 10.3969/j.issn.1002-1671.2025.04.001.
[23]
LARIVIÈRE S, ROYER J, RODRÍGUEZ-CRUCES R, et al. Structural network alterations in focal and generalized epilepsy assessed in a worldwide ENIGMA study follow axes of epilepsy risk gene expression[J/OL]. Nat Commun, 2022, 13: 4320 [2025-08-11]. https://pmc.ncbi.nlm.nih.gov/articles/PMC9329287/. DOI: 10.1038/s41467-022-31730-5.
[24]
LI Z Z, ZHANG J J, WANG F Q, et al. Surface-based morphometry study of the brain in benign childhood epilepsy with centrotemporal spikes[J/OL]. Ann Transl Med, 2020, 8(18): 1150 [2025-08-11]. https://pmc.ncbi.nlm.nih.gov/articles/PMC7576069/. DOI: 10.21037/atm-20-5845.
[25]
GOTMAN J, GROVA C, BAGSHAW A, et al. Generalized epileptic discharges show thalamocortical activation and suspension of the default state of the brain[J/OL]. Proc Natl Acad Sci U S A, 2005, 102(42): 15236 [2025-08-11]. https://pmc.ncbi.nlm.nih.gov/articles/PMC1257704/. DOI: 10.1073/pnas.0504935102.
[26]
CLEMENS B, PUSKÁS S, SPISÁK T, et al. Increased resting-state EEG functional connectivity in benign childhood epilepsy with centro-temporal spikes[J]. Seizure, 2016, 35: 50-55. DOI: 10.1016/j.seizure.2016.01.001.
[27]
GUSNARD D A, AKBUDAK E, SHULMAN G L, et al. Medial prefrontal cortex and self-referential mental activity: Relation to a default mode of brain function[J/OL]. Proc Natl Acad Sci U S A, 2001, 98(7): 4259 [2025-08-11]. https://pmc.ncbi.nlm.nih.gov/articles/PMC31213/. DOI: 10.1073/pnas.071043098.
[28]
SONG M, DU H J, WU N, et al. Impaired Resting-State Functional Integrations within Default Mode Network of Generalized Tonic-Clonic Seizures Epilepsy[J/OL]. PLoS One, 2011, 6(2): e17294 [2025-08-11]. https://pmc.ncbi.nlm.nih.gov/articles/PMC3045438/. DOI: 10.1371/journal.pone.0017294.
[29]
JIANG S S, LUO C, HUANG Y, et al. Altered Static and Dynamic Spontaneous Neural Activity in Drug-Naïve and Drug-Receiving Benign Childhood Epilepsy With Centrotemporal Spikes[J/OL]. Front Hum Neurosci, 2020, 14: 361 [2025-08-11]. https://pmc.ncbi.nlm.nih.gov/articles/PMC7485420/. DOI: 10.3389/fnhum.2020.00361.
[30]
WU Y, JI G J, ZANG Y F, et al. Local Activity and Causal Connectivity in Children with Benign Epilepsy with Centrotemporal Spikes[J/OL]. PLoS One, 2015, 10(7): e0134361 [2025-08-11]. https://pmc.ncbi.nlm.nih.gov/articles/PMC4520539/. DOI: 10.1371/journal.pone.0134361.
[31]
ZHOU Y F, XU M J, TAN Y H, et al. Characteristics of post-stroke aphasia structural damage based on structural covariance network[J]. Chin J Rehabil Theory Pract, 2022, 28(10): 1198-1204. DOI: 10.3969/j.issn.1006-9771.2022.10.010.
[32]
XIAO F L, LI L, AN D M, et al. Altered attention networks in benign childhood epilepsy with centrotemporal spikes (BECTS): A resting-state fMRI study[J]. Epilepsy Behav, 2015, 45: 234-241. DOI: 10.1016/j.yebeh.2015.01.016.
[33]
XU K, WANG F Q, GENG B W, et al. Abnormal percent amplitude of fluctuation and functional connectivity within and between networks in benign epilepsy with centrotemporal spikes[J/OL]. Epilepsy Res, 2022, 185: 106989 [2025-08-11]. https://www.sciencedirect.com/science/article/pii/S0920121122001401. DOI: 10.1016/j.eplepsyres.2022.106989.
[34]
ZHOU C, GAO T, GUO T, et al. Structural Covariance Network Disruption and Functional Compensation in Parkinson's Disease[J/OL]. Front Aging Neurosci, 2020, 12: 199 [2025-08-11]. https://pmc.ncbi.nlm.nih.gov/articles/PMC7351504/. DOI: 10.3389/fnagi.2020.00199.
[35]
FOUTCH K, TILTON I, COONEY A, et al. Adolescent seizure impacts oligodendrocyte maturation, neuronal-glial circuit Formation, and myelination in the mammalian forebrain[J]. Neuroscience, 2025, 564: 144-159. DOI: 10.1016/j.neuroscience.2024.11.050.
[36]
OSTROWSKI L M, CHINAPPEN D M, STOYELL S M, et al. Children with Rolandic epilepsy have micro- and macrostructural abnormalities in white matter constituting networks necessary for language function[J/OL]. Epilepsy Behav, 2023, 144: 109254 [2025-08-11]. https://pubmed.ncbi.nlm.nih.gov/37209552/. DOI: 10.1016/j.yebeh.2023.109254.
[37]
OSMANI W A, GALLO A, TABOR M, et al. Repeated seizure-induced brainstem neuroinflammation contributes to post-ictal ventilatory control dysfunction[J/OL]. Front Physiol, 2024, 15: 1413479 [2025-08-11]. https://pmc.ncbi.nlm.nih.gov/articles/PMC11339535/. DOI: 10.3389/fphys.2024.1413479.
[38]
ZHAO P L, DING X M, LI L N, et al. A review of cell-type specific circuit mechanisms underlying epilepsy[J/OL]. Acta Epileptol, 2024, 6(1): 18 [2025-08-11]. https://pubmed.ncbi.nlm.nih.gov/40217549/. DOI: 10.1186/s42494-024-00159-2.
[39]
WANG J, LIU C, LI Q B. Research progress on the evolutionary mechanism of benign childhood epilepsy with central-temporal spikes[J]. J Clin Neurol, 2022, 35(3): 225-228. DOI: 10.3969/j.issn.1004-1648.2022.03.016.

PREV Application of 3D-pCASL in evaluating cerebral perfusion and early prognosis in extremely preterm infants with HIBD
NEXT The study on CBF and CBF connectivity differences in adolescent patients with major depressive disorder accompanied by non-suicidal self-injury
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn