Share:
Share this content in WeChat
X
Clinical Article
MRI study on hippocampal development of intrauterine growth restriction
RUAN Jin  WANG Lei  XIA Xun  DOU Zhibo  ZHENG Huanji  TAN Siping 

DOI:10.12015/issn.1674-8034.2025.11.011.


[Abstract] Objective To investigate the development of bilateral hippocampi in fetuses with intrauterine growth restriction (IUGR) using MRI in the second and third trimester of pregnancy.Materials and Methods A retrospective analysis was conducted on the prenatal MR images of 51 fetuses with growth restriction and 50 normal fetuses who visited the prenatal diagnosis department of our hospital from January 2023 to Februry 2025. Linear regression was used to evaluate the relationship between gestational age and the long diameter of the fetal sagittal hippocampus and the hippocampal infolding angle (HIA). The t-test was used to compare the long diameter of the sagittal hippocampus and HIA between the two groups.Results Gestational age was significantly positively correlated with the bilateral sagittal hippocampal long diameter and HIA in the normal group and IUGR group in (the normal group, the right sagittal hippocampal long diameter r = 0.936, P < 0.001; the left sagittal hippocampal long diameter r = 0.901, P < 0.001; the right HIA r = 0.867, P < 0.001; the left HIA r = 0.856, P < 0.001. In the IUGR group, the right sagittal hippocampal long diameter r = 0.807, P < 0.001; the left sagittal hippocampal long diameter r = 0.778, P < 0.001; the right HIA r = 0.786, P < 0.001; the left HIA r = 0.763, P < 0.001). In the normal group, the regression equations between hippocampal longitudinal diameter (Y) and gestational age (X) were: left side, Y = 1.11 + 0.64X (β = 0.901, SE = 0.045, t = 14.388, R2 = 0.812, P < 0.001); right side, Y = 1.96 + 0.69X (β = 0.936, SE = 0.038, t = 18.399, R2 = 0.876, P < 0.001). The regression equations between HIA (Y) and gestational age (X) were: left side, Y = 53.13 + 0.54X (β = 0.856, SE = 0.047, t = 11.447, R2 = 0.812, P < 0.001); right side, Y = 52.57 + 0.59X (β = 0.867, SE = 0.049, t = 12.074, R² = 0.752, P < 0.001). In the IUGR group, the regression equations between hippocampal longitudinal diameter (Y) and gestational age (X) were: left side, Y = 4.72 + 0.39X (β = 0.778, SE = 0.045, t = 8.660, R2 = 0.605, P < 0.001); right side, Y = 6.14 + 0.37X (β = 0.807, SE = 0.038, t = 9.579, R2 = 0.652, P < 0.001). The regression equations between HIA (Y) and gestational age (X) were: left side, Y = 55.88 + 0.40X (β = 0.763, SE = 0.049, t = 8.273, R2 = 0.605, P < 0.001); right side, Y = 56.71 + 0.41X (β = 0.786, SE = 0.046, t = 8.911, R2 = 0.618, P < 0.001). The mean hippocampal longitudinal diameters in the normal group were (19.698 ± 2.075) mm (right) and (19.006 ± 2.002) mm (left), while those in the IUGR group were (17.941 ± 1.284) mm (right) and (17.186 ± 1.408) mm (left). The differences between groups were statistically significant (right: t = 5.104, P < 0.001; left: t = 5.273, P < 0.001). The mean HIA values in the normal group were (71.018 ± 1.907)° (right) and (70.008 ± 1.769)° (left), while in the IUGR group they were (69.958 ± 1.480)° (right) and (68.911 ± 1.499)° (left). These intergroup differences were also statistically significant (right: t = 3.113, P = 0.002; left: t = 3.362, P = 0.001).Conclusions The size of the hippocampus and HIA in IUGR fetuses change with gestational age, there are differences in the hippocampal development of IUGR fetuses and that of normal fetuses. MRI can provide imaging diagnostic support for hippocampal development abnormalities in IUGR.
[Keywords] intrauterine growth restriction;fetus;hippocampal;magnetic resonance imaging;hippocampal infolding angle

RUAN Jin1   WANG Lei1   XIA Xun2   DOU Zhibo1   ZHENG Huanji1   TAN Siping1*  

1 Department of Radiology, Shenzhen Nanshan Maternal and Child Healthcare Hospital, Shenzhen 518000, China

2 Department of Prenatal Diagnosis, Shenzhen Nanshan Maternal and Child Healthcare Hospital, Shenzhen 518000, China

Corresponding author: TAN S P, E-mail: tan-yang@126.com

Conflicts of interest   None.

Received  2025-08-06
Accepted  2025-10-25
DOI: 10.12015/issn.1674-8034.2025.11.011
DOI:10.12015/issn.1674-8034.2025.11.011.

[1]
LAWN J E, OHUMA E O, BRADLEY E, et al. Small babies, big risks: global estimates of prevalence and mortality for vulnerable newborns to accelerate change and improve counting[J]. Lancet, 2023, 401(10389): 1707-1719. DOI: 10.1016/S0140-6736(23)00522-6.
[2]
MELER E, MAZARICO E, EIXARCH E, et al. Ten-year experience of protocol-based management of small-for-gestational-age fetuses: perinatal outcome in late-pregnancy cases diagnosed after 32 weeks[J]. Ultrasound Obst Gyn, 2021, 57(1): 62-69. DOI: 10.1002/uog.23537.
[3]
Fetal Growth Restriction. ACOG Practice Bulletin, Number 227[J/OL]. OB/GYN, 2021, 137(2): e16-e28 [2025-08-06]. https://pubmed.ncbi.nlm.nih.gov/33481528. DOI: 10.1097/AOG.0000000000004251.
[4]
JOUANNIC J M, BLONDIAUX E, SENAT M V, et al. prognostic value of diffusion-weighted magnetic resonance imaging of brain in fetal growth restriction: results of prospective multicenter study[J]. Ultrasound Obst Gyn, 2020, 56(6): 893-900. DOI: 10.1002/uog.21926.
[5]
ZENG W, GUO J L, LIANG X, et al. Dentifying Cognitively Impairment in Patients with Parkinson Disease by Machine Learning Model Based on Hippocampal Radiomics Features Derived from Voxel-Mirrored Homotopic Connectivity Imaging[J]. Journal of Clinical Radiology, 2025, 44(2): 211-219. DOI: 10.13437/j.cnki.jcr.2025.02.004.
[6]
TOPRAK E, SAYAL H B. Ultrasonographic imaging of the fetal hippocampus[J]. Arch Gynecol Obstet, 2024, 309(5): 1943-1949. DOI: 10.1007/s00404-023-07093-7.
[7]
DEMIR S S, CAGLIYAN E, SARRIGHINI A, et al. Hippocampal infolding angle changes during brain development assessed by prenatal MR imaging[J]. AJNR Am J Neuroradiol, 2006, 27(10): 2093-2097.
[8]
YIN T T, YAN J, TANG Q Q, et al. Progress of neurodevelopmental disorders in intrauterine growth restriction[J]. Chongqing Medical Journal, 2025, 54(4): 966-971. DOI: 10.3969/j.issn.1671-8348.2025.04.031.
[9]
BROWN A S, WIEBEN M, MURDOCK S, et al. Intrauterine Growth Restriction Causes Abnormal Embryonic Dentate Gyrus Neurogenesis in Mouse Offspring That Leads to Adult Learning and Memory Deficits[J/OL]. eNeuro, 2021, 8(5): ENEURO.0062-21.2021 [2025-08-06]. https://pubmed.ncbi.nlm.nih.gov/34544755/. DOI: 10.1523/ENEURO.0062-21.2021.
[10]
HIGASHIJIMA T, SHIROZU H, SAITSU H, et al. Incomplete hippocampal inversion in patients with mutations in genes involved in sonic hedgehog signaling[J/OL]. Heliyon, 2023, 9(4): e14712 [2025-08-06]. https://pubmed.ncbi.nlm.nih.gov/37012904. DOI: 10.1016/j.heliyon.2023.e14712.
[11]
HONÓRIO D R, RIBEIRO A L D S, SILVA T L M DA, et al. Prenatal human brain development is not spared by IUGR: A systematic review[J/OL]. Early Hum Dev, 2025, 201: 106199 [2025-08-06]. https://doi.org/10.1016/j.earlhumdev.2025.106199. DOI: 10.1016/j.earlhumdev.2025.106199.
[12]
SUN Y, CAO Y M, YI Z X, et al. Prenatal MRI of fetal hippocampal infolding angle change in middle and third trimester[J]. Chin J Magn Reson Imaging, 2024, 15(5): 24-27, 101. DOI: 10.12015/issn.1674-8034.2024.05.005.
[13]
Capital Institute of Pediatrics, the Coordinating Study Group of Nine Cities on the Physical Growth and Development of Children. Growth standard curves of birth weight, length and head circum ference of Chinese newborns of different gestation[J]. Chin J Pediatr, 2020, 58(9): 738-746.
[14]
KOO T K, LI M Y. A guideline of selecting and reporting intraclass correlation coeffic ients for reliability research[J]. J Chiropr Med, 2016, 15(2): 155-163. DOI: 10.1016/j.jcm.2016.02.012.
[15]
CHEN S, CHEN Z J, LING Y, et al. Research on the screening of aqueous biomarkers for Intrauterine g'rowth restriction by proteomics[J/OL]. Journal of Hainan Medical University, 1-27 [2025-07-27]. https://doi.org/10.13210/j.cnki.jhmu.20250616.005.
[16]
HESSE H, PALMER C, RIGDON C D, et al. Differences in body composition and growth persist postnatally in fetuses diagnosed with severe compared to mild fetal growth restriction[J]. J Neonatal Perinatal Med, 2022, 15(3): 589-598. DOI: 10.3233/NPM-210872.
[17]
LI Y, YANG X K, CHEN Y. Research Progress on Early-onset Fetal Growth Restriction[J]. Chinese Journal of Family Planning & Gynecotokology, 2025, 17(4): 3-6.
[18]
TEDYANTO C P, PRASETYADI F O H, DEWI S, et al. Maternal factors and perinatal outcomes associated with early-onset versus late-onset fetal growth restriction: a meta-analysis[J/OL]. J Matern-Fetal Med, 2025, 38(1): 2505774 [2025-08-06]. https://doi.org/10.1080/14767058.2025.2505774. DOI: 10.1080/14767058.2025.2505774.
[19]
CHAOUI R, HELING K S, KAINER F, et al. Fetale Neurosonografie mittels 3-dimensionaler multiplanarer Sonografie Fetal neurosonography using 3-dimensional multiplanar sonography[J]. Z Geburtshilfe Neonatol, 2012, 216(2): 54-62. DOI: 10.1055/s-0032-1308960.
[20]
PICCIRILLI E, MARCHETTI C, PANARA V, et al. Fetal MR Imaging Anatomy of the Transverse Temporal Gyrus (Heschl Gyrus)[J]. AJNR Am J Neuroradiol, 2023, 44(11): 1325-1331. DOI: 10.3174/ajnr.A8026.
[21]
WANG Z S, LIU J X, LI Z Z, et al. 5.0T MRI measurement of hippocampal formation subfield volumes in healthy adults[J]. Chin J Med Imaging Technol, 2024, 40(5): 648-652. DOI: 10.13929/j.issn.1003-3289.2024.05.003.
[22]
BARRY D N, CLARK I A, MAGUIRE E A. The relationship between hippocampal subfield volumes and autobiographical memory persistence[J]. Hippocampus, 2021, 31(4): 362-374. DOI: 10.1002/hipo.23293.
[23]
MOTTE-SIGNORET E, SHANKAR-AGUILERA S, BRAILLY-TABARD S, et al. Small for Gestational Age preterm Neonates Exhibit Defective GH/IGF1 Signaling pathway[J/OL]. Front Pediatr, 2021, 9: 711400 [2025-08-06]. https://pmc.ncbi.nlm.nih.gov/articles/PMC8382944. DOI: 10.3389/fped.2021.711400.
[24]
YEHUDA B, RABINOWICH A, ZILBERMAN A, et al. Reduced gyrification in fetal growth restriction with prenatal magnetic resonance images[J/OL]. Cereb Cortex, 2024, 34(6): bhae250 [2025-08-06]. https://doi.org/10.1093/cercor/bhae250. DOI: 10.1093/cercor/bhae250.
[25]
SACCHI C, O'MUIRCHEARTAIGH J, BATALLE D, et al. Neurodevelopmental Outcomes following Intrauterine Growth Restriction and Very Preterm Birth[J/OL]. J Pediatr, 2021, 238: 135-144.e10 [2025-08-06]. https://pubmed.ncbi.nlm.nih.gov/34245768. DOI: 10.1016/j.jpeds.2021.07.002.
[26]
HAN S, ZHENG R, LI S, et al. progressive brain structural abnormality in depression assessed with MR imaging by using causal network analysis[J]. Psychol Med, 2023, 53(5): 2146-2155. DOI: 10.1017/S0033291721003986.
[27]
LIANG L, WANG L L, JIANG X D, et al. Hippocampal volume and resting-state functional connectivity on magnetic resonance imaging in patients with parkinson and depression[J]. Quant Imaging Med Surg, 2024, 14(1): 824-836. DOI: 10.21037/qims-23-919.
[28]
LANG M, COLBY S, ASHBY-PADIAL C, et al. An imaging review of the hippocampus and its common pathologies[J]. J Neuroimaging, 2024, 34(1): 5-25. DOI: 10.1111/jon.13165.
[29]
OKADA Y, KATO T, IWAI K, et al. Evaluation of hippocampal infolding using magnetic resonance imaging[J]. Neuroreport, 2003, 14(10): 1405-1409. DOI: 10.1097/01.wnr.0000078381.40088.d0.
[30]
BHOOPATHY R M, ARTHY B, VIGNESH S S, et al. Involvement of Incomplete Hippocampal Inversion in Intractable Epilepsy: Evidence from Neuropsychological Studies[J]. Neurol India, 2021, 69(4): 842-846. DOI: 10.4103/0028-3886.323886.
[31]
MUTTI C, RICCÒ M, BARTOLINI Y, et al. Incomplete hippocampal inversion and epilepsy: A systematic review and meta-analysis[J]. Epilepsia, 2021, 62(2): 383-396. DOI: 10.1111/epi.16787.
[32]
BEKER ACAY M, KÖKEN R, ÜNLÜ E, et al. Evaluation of hippocampal infolding angle and incomplete hippocampal inversion in pediatric patients with epilepsy and febrile seizures[J]. Diagn Interv Radiol, 2017, 23(4): 326-330. DOI: 10.5152/dir.2017.160077.
[33]
CHOU I C, SUNG F C, HONG S Y. Incidence of epilepsy in children born prematurely and small for gestational age at term gestation: A population-based cohort study[J]. J Paediatr Child H, 2020, 56(2): 324-329. DOI: 10.1111/jpc.14611.

PREV Voxel-wise degree centrality and functional connectivity alterations in Parkinson<sup><sup>,</sup></sup>s disease: Associations with disease severity
NEXT Prediction of sleepiness level based on cerebral fMRI of pilots and analysis of critical characteristics of network connection
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn