Share:
Share this content in WeChat
X
Clinical Article
Alterations in glymphatic system function in patients with disorders of consciousness following traumatic brain injury and their impact on consciousness levels and prognosis
MA Xiaoyang  HUANG Wenjing  YAN Jiahao  WANG Zhuo  YANG Dan  DA Minglian  LI Xiaoling  ZHANG Jing 

DOI:10.12015/issn.1674-8034.2025.11.013.


[Abstract] Objective To investigate glymphatic pathway impairment following traumatic brain injury (TBI) and its association with consciousness states and clinical outcomes in patients with post-traumatic disorders of consciousness (DoC).Materials and Methods This study recruited 22 patients with post-traumatic DoC and 30 healthy controls for magnetic resonance imaging scans. Glymphatic function was evaluated via choroid plexus volume (CPV) and the diffusion tensor imaging along the perivascular space (DTI-ALPS) index. Consciousness levels and functional recovery were assessed using the Coma Recovery Scale-Revised (CRS-R) and Glasgow Outcome Scale-Extended (GOSE). Intergroup differences in DTI-ALPS and CPV were compared. Pearson correlation analysis examined relationships among DTI-ALPS, CPV, CRS-R, and GOSE scores in the DoC group.Results The DoC group exhibited significantly lower DTI-ALPS indices and larger choroid plexus volume/total intracranial volume (CPV/TIV) compared to HC (P < 0.05). In DoC patients, DTI-ALPS positively correlated with CRS-R scores (r = 0.43, P = 0.04) but negatively with CPV (r = -0.46, P = 0.04). CPV/TIV showed negative correlation with CRS-R (r = -0.64, P = 0.01). At 3-month MRI follow-up, GOSE scores positively correlated with DTI-ALPS (r = 0.45, P = 0.04) and negatively with CPV/TIV (r = -0.59, P = 0.01).Conclusions TBI induces glymphatic pathway dysfunction, which influences consciousness states and clinical outcomes. These findings may reveal potential neural mechanisms of post-TBI DoC, clarify the relationship between glymphatic impairment and residual consciousness, and offer novel neuroimaging biomarkers for clinical diagnosis and prognosis in post-traumatic DoC.
[Keywords] traumatic brain injury;disorders of consciousness;magnetic resonance imaging;glymphatic function;choroid plexus volume

MA Xiaoyang1, 2, 3   HUANG Wenjing1, 2, 3   YAN Jiahao1, 2, 3   WANG Zhuo1, 2, 3   YANG Dan1, 2, 3   DA Minglian4   LI Xiaoling4   ZHANG Jing1, 2, 3*  

1 Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou 730030, China

2 Second Clinical School, Lanzhou University, Lanzhou 730030, China

3 Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou 730030, China

4 Department of Rehabilitation Medicine, Lanzhou University Second Hospital, Lanzhou 730030, China

Corresponding author: ZHANG J, E-mail: ery_zhangjing@lzu.edu.cn

Conflicts of interest   None.

Received  2025-07-28
Accepted  2025-10-15
DOI: 10.12015/issn.1674-8034.2025.11.013
DOI:10.12015/issn.1674-8034.2025.11.013.

[1]
WU L, LIU M X, YIN C P, et al. Citicoline Sodium Plus Hyperbaric Oxygen Therapy for Cognitive Dysfunction in Severe Traumatic Brain Injury: A Retrospective Analysis of 94 Cases.[J]. Clinical Pharmacy Practice, 2025, 34(3): 195-198, 220. DOI: 10.16047/j.cnki.cn14-1300/r.2025.03.013.
[2]
CHANG J L. Prognostic Value of Marshall CT Score Combined with Age-Adjusted Shock Index for Short-Term Outcomes in Pediatric Patients with Moderate-to-Severe Traumatic Brain Injury[D]. Zhengzhou: Zhengzhou University, 2023. DOI: 10.27466/d.cnki.gzzdu.2023.002326.
[3]
HU D Y, HAN X C, YAO S, et al. Comparative Study on the Predictive Efficacy of Five Coma Assessment Scales for Prognosis in Patients with Severe Stroke[J]. Chinese Journal of Cerebrovascular Diseases, 2025, 22(1): 15-22, 37. DOI: 10.3969/j.issn.1672-5921.2025.01.003.
[4]
BAGNATO S. Progress and Challenges in Understanding Disorders of Consciousness following Acute Brain Injury[J/OL]. J Integr Neurosci, 2023, 22(4): 84 [2025-07-25]. https://www.imrpress.com/journal/JIN/22/4/10.31083/j.jin2204084. DOI: 10.31083/j.jin2204084.
[5]
WILSON J T, PETTIGREW L E, TEASDALE G M. Structured interviews for the Glasgow Outcome Scale and the extended Glasgow Outcome Scale: guidelines for their use[J]. J Neurotrauma, 1998, 15(8): 573-585. DOI: 10.1089/neu.1998.15.573.
[6]
BOTTA D, HUTUCA I, GHOUL E E, et al. Emerging non-invasive MRI techniques for glymphatic system assessment in neurodegenerative disease[J/OL]. J Neuroradiol, 2025, 52(3): 101322 [2025-07-25]. https://www.sciencedirect.com/science/article/pii/S015098612500080X?via%3Dihub. DOI: 10.1016/j.neurad.2025.101322.
[7]
HSU J L, WEI Y C, TOH C H, et al. Magnetic Resonance Images Implicate That Glymphatic Alterations Mediate Cognitive Dysfunction in Alzheimer Disease[J]. Ann Neurol, 2023, 93(1): 164-174. DOI: 10.1002/ana.26516.
[8]
BUCCELLATO F R, D'ANCA M, SERPENTE M, et al. The Role of Glymphatic System in Alzheimer's and Parkinson's Disease Pathogenesis[J/OL]. Biomedicines, 2022, 10(9): 2261 [2025-07-25]. https://pmc.ncbi.nlm.nih.gov/articles/PMC9496080/. DOI: 10.3390/biomedicines10092261.
[9]
SILVA I, SILVA J, FERREIRA R, et al. Glymphatic system, AQP4, and their implications in Alzheimer's disease[J/OL]. Neurol Res Pract, 2021, 3(1): 5 [2025-07-25]. https://pmc.ncbi.nlm.nih.gov/articles/PMC7816372/. DOI: 10.1186/s42466-021-00102-7.
[10]
BOUHRARA M, WALKER K A, ALISCH J S R, et al. Association of Plasma Markers of Alzheimer's Disease, Neurodegeneration, and Neuroinflammation with the Choroid Plexus Integrity in Aging[J]. Aging Dis, 2024, 15(5): 2230-2240. DOI: 10.14336/ad.2023.1226.
[11]
XIAO S. Correlation Between Glymphatic Function, Choroid Plexus Volume, and Cognitive Impairment in Parkinson's Disease[D]. Hengyang: University of South China, 2024. DOI: 10.27234/d.cnki.gnhuu.2024.001758.
[12]
SU H M. Glymphatic Dysfunction Mediates White Matter Degradation and Cognitive Impairment after Ischemic Stroke: A Multimodal MRI Study[D]. Wuhan: Huazhong University of Science and Technology, 2024. DOI: 10.27157/d.cnki.ghzku.2024.000131.
[13]
YUH E L, MUKHERJEE P, LINGSMA H F, et al. Magnetic resonance imaging improves 3-month outcome prediction in mild traumatic brain injury[J]. Ann Neurol, 2013, 73(2): 224-235. DOI: 10.1002/ana.23783.
[14]
TURTZO L C, CHAPAGAIN N Y, PETERKIN N, et al. Association of Traumatic Meningeal Enhancement on MRI With Clinical Recovery in Patients With Traumatic Brain Injury[J/OL]. Neurology, 2025, 104(6): e213448 [2025-07-28]. https://www.neurology.org/doi/10.1212/WNL.0000000000213448?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%20%200pubmed. DOI: 10.1212/wnl.0000000000213448.
[15]
ZHANG X, PEI X, SHI Y, et al. Unveiling connections between venous disruption and cerebral small vessel disease using diffusion tensor image analysis along perivascular space (DTI-ALPS): A 7-T MRI study[J]. Int J Stroke, 2025, 20(4): 497-506. DOI: 10.1177/17474930241293966.
[16]
XU Y, WANG M, LI X, et al. Glymphatic dysfunction mediates the influence of choroid plexus enlargement on information processing speed in patients with white matter hyperintensities[J/OL]. Cereb Cortex, 2024, 34(6): bhae265 [2025-07-25]. https://academic.oup.com/cercor/article/34/6/bhae265/7697619. DOI: 10.1093/cercor/bhae265.
[17]
DAMKIER H H, BROWN P D, PRAETORIUS J. Cerebrospinal fluid secretion by the choroid plexus[J]. Physiol Rev, 2013, 93(4): 1847-1892. DOI: 10.1152/physrev.00004.2013.
[18]
MIHALJEVIC S, MICHALICOVA A, BHIDE M, et al. Pathophysiology of the choroid plexus in brain diseases[J]. Gen Physiol Biophys, 2021, 40(6): 443-462. DOI: 10.4149/gpb_2021032.
[19]
ÖZEVREN H, DEVECI E, TUNCER M C. Histopathological changes in the choroid plexus after traumatic brain injury in the rats: a histologic and immunohistochemical study[J]. Folia Morphol (Warsz), 2018, 77(4): 642-648. DOI: 10.5603/FM.a2018.0029.
[20]
KOLAHI S, ZAREI D, ISSAIY M, et al. Choroid plexus volume changes in multiple sclerosis: insights from a systematic review and meta-analysis of magnetic resonance imaging studies[J]. Neuroradiology, 2024, 66(11): 1869-1886. DOI: 10.1007/s00234-024-03439-3.
[21]
HU P, YUAN Y, ZOU Y, et al. Alterations in the DTI-ALPS index and choroid plexus volume are associated with clinical symptoms in participants with narcolepsy type 1[J]. Sleep Med, 2024, 124: 471-478. DOI: 10.1016/j.sleep.2024.10.019.
[22]
ZHOU Y F, HUANG J C, ZHANG P, et al. Choroid Plexus Enlargement and Allostatic Load in Schizophrenia[J]. Schizophr Bull, 2020, 46(3): 722-731. DOI: 10.1093/schbul/sbz100.
[23]
LI Y, ZHOU Y, ZHONG W, et al. Choroid Plexus Enlargement Exacerbates White Matter Hyperintensity Growth through Glymphatic Impairment[J]. Ann Neurol, 2023, 94(1): 182-195. DOI: 10.1002/ana.26648.
[24]
MESTRE H, HABLITZ L M, XAVIER A L, et al. Aquaporin-4-dependent glymphatic solute transport in the rodent brain[J/OL]. Elife, 2018, 7: e40070 [2025-07-25]. https://pmc.ncbi.nlm.nih.gov/articles/PMC6307855/. DOI: 10.7554/eLife.40070.
[25]
ILIFF J J, CHEN M J, PLOG B A, et al. Impairment of glymphatic pathway function promotes tau pathology after traumatic brain injury[J]. J Neurosci, 2014, 34(49): 16180-18193. DOI: 10.1523/jneurosci.3020-14.2014.
[26]
GUO Y, WU L, LIU J, et al. Correlation between glymphatic dysfunction and cranial defect in severe traumatic brain injury: a retrospective case-control study based on a diffusion tensor image analysis along the perivascular space (DTI-ALPS) investigation[J]. Quant Imaging Med Surg, 2024, 14(9): 6756-6766. DOI: 10.21037/qims-24-348.
[27]
BOUFFARD M A, AVANAKI M A, FORD J N, et al. MRI Indices of Glymphatic Function Correlate With Disease Duration in Idiopathic Intracranial Hypertension[J]. J Neuroophthalmol, 2024, 45(3): 321-326. DOI: 10.1097/wno.0000000000002259.
[28]
GOLDEN K, BORSI L, STERLING A, et al. Recovery after moderate to severe TBI and factors influencing functional outcome: What you need to know[J]. J Trauma Acute Care Surg, 2024, 97(3): 343-355. DOI: 10.1097/ta.0000000000004305.
[29]
ASKEN B M, MANTYH W G, LA JOIE R, et al. Association of remote mild traumatic brain injury with cortical amyloid burden in clinically normal older adults[J]. Brain Imaging Behav, 2021, 15(5): 2417-2425. DOI: 10.1007/s11682-020-00440-1.
[30]
GHAITH H S, NAWAR A A, GABRA M D, et al. A Literature Review of Traumatic Brain Injury Biomarkers[J]. Mol Neurobiol, 2022, 59(7): 4141-4158. DOI: 10.1007/s12035-022-02822-6.
[31]
WU J, REN R, CHEN T, et al. Neuroimmune and neuroinflammation response for traumatic brain injury[J/OL]. Brain Res Bull, 2024, 217: 111066 [2025-07-25]. https://www.sciencedirect.com/science/article/pii/S0361923024002004?via%3Dihub. DOI: 10.1016/j.brainresbull.2024.111066.
[32]
BRETT B L, GARDNER R C, GODBOUT J, et al. Traumatic Brain Injury and Risk of Neurodegenerative Disorder[J]. Biol Psychiatry, 2022, 91(5): 498-507. DOI: 10.1016/j.biopsych.2021.05.025.
[33]
HASEGAWA S, YOSHIMARU D, HAYASHI N, et al. Analyzing the relationship between specific brain structural changes and the diffusion tensor image analysis along the perivascular space index in idiopathic normal pressure hydrocephalus[J/OL]. J Neurol, 2024, 272(1): 56 [2025-07-25]. https://link.springer.com/article/10.1007/s00415-024-12850-y. DOI: 10.1007/s00415-024-12850-y.
[34]
HU P, ZOU Y, ZHOU M, et al. Association of diffusion tensor imaging along the perivascular space index with cognitive impairment in type 2 diabetes mellitus[J]. Quant Imaging Med Surg, 2025, 15(2): 1491-1504. DOI: 10.21037/qims-24-1591.
[35]
QIN Y, LI X, QIAO Y, et al. DTI-ALPS: An MR biomarker for motor dysfunction in patients with subacute ischemic stroke[J/OL]. Front Neurosci, 2023, 17: 1132393 [2025-07-25]. https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2023.1132393/full. DOI: 10.3389/fnins.2023.1132393.
[36]
YANG C, TIAN S, DU W, et al. Glymphatic function assessment with diffusion tensor imaging along the perivascular space in patients with major depressive disorder and its relation to cerebral white-matter alteration[J]. Quant Imaging Med Surg, 2024, 14(9): 6397-6412. DOI: 10.21037/qims-24-510.
[37]
XIE Y, ZHU H, YAO Y, et al. Enlarged choroid plexus in relapsing-remitting multiple sclerosis may lead to brain structural changes through the glymphatic impairment[J/OL]. Mult Scler Relat Disord, 2024, 85: 105550 [2025-07-28]. https://www.msard-journal.com/article/S2211-0348(24)00129-9/abstract. DOI: 10.1016/j.msard.2024.105550.

PREV Prediction of sleepiness level based on cerebral fMRI of pilots and analysis of critical characteristics of network connection
NEXT Conventional MRI features combined with T1WI enhanced histogram analysis to differentiate glioblastoma from grade Ⅳ astrocytoma
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn