Share:
Share this content in WeChat
X
Clinical Article
Prediction of pathological grading and Ki-67 expression in intracranial extraventricular ependymomas based on VASARI quantitative features
ZHANG Ning  ZHAO Xuelian  HAN Xinling  YANG Dan  HU Wanjun  ZHANG Xue  LIU Hong  ZHANG Jing  LIU Guangyao 

DOI:10.12015/issn.1674-8034.2025.11.015.


[Abstract] Objective To analyze preoperative visually accessible rembrandt images (VASARI) features in patients with intracranial extraventricular ependymoma (IEE) and evaluate their predictive value for world health organization (WHO) grading and Ki-67 proliferation index.Materials and Methods Clinical and preoperative cranial MRI data of 30 pathologically confirmed IEE patients (18 WHO grade 2, 12 grade 3) who underwent surgical resection at Second Hospital of Lanzhou University (January 2012 to September 2024) were retrospectively analyzed. Two experienced neuroradiologists independently evaluated MRI characteristics according to VASARI criteria. SPSS 27.0 was used to analyze correlations between VASARI features and WHO grade/Ki-67 index. Diagnostic efficacy was assessed using receiver operating characteristic (ROC) curves.Results The VASARI total score was significantly higher in WHO grade 3 group (92.00 ± 18.75) versus grade 2 (76.22 ± 18.89, P < 0.05). ROC analysis showed AUC of 0.736 (95% CI: 0.541 to 0.931) for differentiating grade 3 from grade 2 tumors. At optimal cut-off ≥ 59.5, sensitivity was 94.1% and specificity 30.8%. Significant intergroup differences (P < 0.05) existed in cystic change rate (F8), enhancement rim thickness (F11), and peritumoral edema percentage (F14), with grade 3 tumors exhibiting higher cystic rates, thicker enhancement rims, and more extensive edema. VASARI total score positively correlated with WHO grade (r = 0.391, P = 0.032) and Ki-67 index (r = 0.370, P = 0.044). For predicting high Ki-67 expression, AUC was 0.633 (95% CI: 0.421 to 0.845) with 69.2% sensitivity and 82.4% specificity at cut-off ≥ 76.5.Conclusions The VASARI MRI features (F8, F11, F14, and total score) have certain value in non-invasively distinguishing WHO grade 2 from grade 3 IEE preoperatively and in predicting the Ki-67 proliferation index. They can serve as an auxiliary assessment tool to provide reference for clinical diagnosis and treatment.
[Keywords] intracranial extraventricular ependymoma;visually accessible Rembrandt images;magnetic resonance imaging;Ki-67;World Health Organization grading

ZHANG Ning1   ZHAO Xuelian1   HAN Xinling1   YANG Dan1   HU Wanjun1, 2, 3   ZHANG Xue1, 2, 3   LIU Hong1, 2, 3   ZHANG Jing1, 2, 3   LIU Guangyao1, 2, 3*  

1 Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou 730030, China

2 Gansu Provincial Clinical Research Center for Functional and Molecular Imaging, Lanzhou 730030, China

3 Gansu Industrial Technology Center for Medical MRI Equipment Applications, Lanzhou 730030, China

Corresponding author: LIU G Y, E-mail: lgy362263779@163.com

Conflicts of interest   None.

Received  2025-07-13
Accepted  2025-10-09
DOI: 10.12015/issn.1674-8034.2025.11.015
DOI:10.12015/issn.1674-8034.2025.11.015.

[1]
BADARY A, KURDI S Z, ALMEALAWY Y F, et al. Intracranial ependymoma: a retrospective analysis of clinical features, treatment modalities, and long‐term outcome[J]. Aging Med, 2024, 7(6): 679-688. DOI: 10.1002/agm2.12378.
[2]
OUYANG H, LIU B F, BAI Y P, et al. MRI Findings and Correlation Analysis of ADC Value and Ki67 Proliferative Index in Adult Ependymoma[J]. Chinese Computed Medical Imaging, 2021, 27(6): 478-481. DOI: 10.19627/j.cnki.cn31-1700/th.2021.06.002.
[3]
YAO Y, FU Y, ZHOU G, et al. Nomogram incorporating preoperative MRI-VASARI features for differentiating intracranial extraventricular ependymoma from glioblastoma[J]. Quant Imaging Med Surg, 2024, 14(3): 2255-2266. DOI: 10.21037/qims-23-1148.
[4]
ZARE A, ZARE A, HAJIKARIMLOO B, et al. Radiosurgery for central nervous system ependymomas: a systematic review and meta-analysis[J]. J Neurooncol, 2025, 174: 315-327. DOI: 10.1007/s11060-025-05076-z.
[5]
HE H, LONG Q, LI L, et al. Ensemble learning‐based pretreatment MRI radiomic model for distinguishing intracranial extraventricular ependymoma from glioblastoma multiforme[J/OL]. NMR Biomed, 2024, 37(12): e5242 [2025-07-13]. https://doi.org/10.1002/nbm.5242. DOI: 10.1002/nbm.5242.
[6]
XING Z, ZHOU X, XIAO Z, et al. Comparison of Conventional, Diffusion, and Perfusion MRI Between Low-Grade and Anaplastic Extraventricular Ependymoma[J]. AJR Am J Roentgenol, 2020, 215(4): 978-984. DOI: 10.2214/AJR.20.22764.
[7]
LOMBARDI G, DELLA PUPPA A, PIZZI M, et al. An overview of intracranial ependymomas in adults[J/OL]. Cancers, 2021, 13(23): 6128 [2025-07-13]. https://doi.org/10.3390/cancers13236128. DOI: 10.3390/cancers13236128.
[8]
HSU H I, HSU S S, CHUNG W Y, et al. Adult posterior fossa anaplastic ependymoma, case series and literature review[J]. World Neurosurg, 2022, 158: 205-209. DOI: 10.1016/j.wneu.2021.11.074.
[9]
LI L, FU Y, ZHANG Y, et al. Magnetic resonance imaging findings of intracranial extraventricular ependymoma: a retrospective multi‐center cohort study of 114 cases[J]. Cancer Med, 2023, 12(15): 16195-16206. DOI: 10.1002/cam4.6279.
[10]
GILBERT M R, YUAN Y, WU J, et al. A phase II study of dose-dense temozolomide and lapatinib for recurrent low-grade and anaplastic supratentorial, infratentorial, and spinal cord ependymoma[J]. Neuro Oncol, 2021, 23(3): 468-477. DOI: 10.1093/neuonc/noaa240.
[11]
BAI J, LI X R, LU J. Integrated 18F-FET PET/MR combined with arterial spin labeling for predicting isocitrate dehydrogenase (lDH) genotype and Ki-67 index of glioma[J]. Chinese Journal of Medical Imaging Technology, 2024, 40(10): 1476-1480. DOI: 10.13929/j.issn.1003-3289.2024.10.005.
[12]
RAO D C, LU F, ZHOU L W, et al. Prediction of Ki-67 expression level in gliomas based on multi-sequence MRI radiomics[J]. Radiologic Practice, 2024, 39(8): 1014-1020. DOI: 10.13609/j.cnki.1000-0313.2024.08.005.
[13]
LIM K Y, LEE K, SHIM Y, et al. Molecular subtyping of ependymoma and prognostic impact of Ki-67[J]. Brain Tumor Pathol, 2022, 39(1): 1-13. DOI: 10.1007/s10014-021-00417-y.
[14]
ZHAO F, WU T, WANG L M, et al. Survival and Prognostic Factors of Adult Intracranial Ependymoma: A Single-institutional Analysis of 236 Patients[J]. Am J Surg Pathol, 2021, 45(7): 979-987. DOI: 10.1097/PAS.0000000000001669.
[15]
IQNEIBI S, NAZZAL J, OWDA B, et al. Immunohistochemical Expression of p27Kip1, p57Kip2, Cyclin D1, Nestin, and Ki-67 in Ependymoma[J/OL]. Brain Sci, 2022, 12(2): 282 [2025-07-13]. https://doi.org/10.3390/brainsci12020282. DOI: 10.3390/brainsci12020282.
[16]
National Cancer Institute. Cancer Imaging Program (CIP)[EB/OL]. https://dctd.cancer.gov/programs/cip.
[17]
SETYAWAN N H, CHORIDAH L, NUGROHO H A, et al. Beyond invasive biopsies: using VASARI MRI features to predict grade and molecular parameters in gliomas[J/OL]. Cancer Imaging, 2024, 24(1): 3 [2025-07-13]. https://doi.org/10.1186/s40644-023-00638-8. DOI: 10.1186/s40644-023-00638-8.
[18]
HU Y, ZHANG K. Noninvasive assessment of Ki-67 labeling index in glioma patients based on multi-parameters derived from advanced MR imaging[J/OL]. Front Oncol, 2024, 14: 1362990 [2025-07-13]. https://doi.org/10.3389/fonc.2024.1362990. DOI: 10.3389/fonc.2024.1362990.
[19]
CHEN Y H, CHEN D J, CHEN M, et al. Application of DSC-PWl in Grading and Ki-67 Expression of Glioma[J]. Chinese Journal of CT and MRI, 2023, 21(2): 4-6. DOI: 10.3969/j.issn.1672-5131.2023.02.003.
[20]
FAN J K, CHENG Y, HUANG H, et al. Prediction of Ki-67 Index Expression Level in WHO Grade Ⅱ-Ⅲ Gliomasby Radiomics Based on T2-Fluid Attenuated Inversion Recovery[J]. Chinese Journal of Medical Imaging, 2023, 31(4): 315-320. DOI: 10.3969/j.issn.1005-5185.2023.04.003.
[21]
YE M P, YANG B, ZHU Z Y, et al. Prediction of Glioma Ki-67 Expression Grading Based on MRI Features[J]. Journal of Clinical Radiology, 2023, 42(1): 6-13. DOI: 10.13437/j.cnki.jcr.2023.01.037.
[22]
SHI H B, ZHAO M N, YU Y F, et al. Diagnostic analysis and imaging findings of MSCT and MRI in intracranial anaplastic meningioma[J]. Journal of Molecular Imaging, 2021, 44(4): 608-611. DOI: 10.12122/j.issn.1674-4500.2021.04.07.
[23]
DENG J, XUE C, LIU X, et al. Differentiating between adult intracranial medulloblastoma and ependymoma using MRI[J/OL]. Clin Radiol, 2023, 78(3): e288-e293 [2025-07-13]. https://doi.org/10.1016/j.crad.2022.11.016. DOI: 10.1016/j.crad.2022.11.016.
[24]
MENG L L. Analysis of MRI VASARI Characteristics and Application of imagomics in Diffuse Glioma Grading and Prediction of ATRX Gene Status[D]. Jinan: Shandong University, 2023. DOI: 10.27272/d.cnki.gshdu.2023.000587.
[25]
CHEN X H, ZHANG R D, ZHOU Y S, et al. Predicting the lDH1 mutation status of gliomas based on multi-sequence MRI radiomics combined with VASARl features[J]. Radiologic Practice, 2024, 39(9): 1138-1145. DOI: 10.13609/j.cnki.1000-0313.2024.09.004.
[26]
XU G, LI C, WANG Y, et al. Correlation between preoperative inflammatory markers, Ki-67 and the pathological grade of glioma[J/OL]. Medicine, 2021, 100(36): e26750 [2025-07-13]. https://doi.org/10.1097/MD.0000000000026750. DOI: 10.1097/MD.0000000000026750.
[27]
LOPEZ-RIVERA V, DONO A, ABDELKHALEQ R, et al. Treatment trends and overall survival in patients with grade II/III ependymoma: the role of tumor grade and location[J/OL]. Clin Neurol Neurosurg, 2020, 199: 106282 [2025-07-13]. https://doi.org/10.1016/j.clineuro.2020.106282. DOI: 10.1016/j.clineuro.2020.106282.
[28]
HAN Z, KANG P, ZHANG H, et al. Prognostic value of H3K27me3 in children with ependymoma[J/OL]. Pediatr Blood Cancer. 2020;67(3): e28121 [2025-07-13]. https://doi.org/10.1002/pbc.28121. DOI: 10.1002/pbc.28121.
[29]
ZHAO L, JIANG Y, WANG Y, et al. Case Report: Sellar Ependymomas: A Clinic-Pathological Study and Literature Review[J/OL]. Front Endocrinol (Lausanne), 2021, 12: 551493 [2025-07-13]. https://doi.org/10.3389/fendo.2021.551493. DOI: 10.3389/fendo.2021.551493.
[30]
GOODKIN O, WU J, PEMBERTON H, et al. Structured reporting of gliomas based on VASARI criteria to improve report content and consistency[J/OL]. BMC Med Imaging, 2025, 25: 99 [2025-07-13]. https://doi.org/10.1186/s12880-025-01603-6. DOI: 10.1186/s12880-025-01603-6.
[31]
SACLI-BILMEZ B, FIRAT Z, TOPCUOGLU O M, et al. Identifying overall survival in 98 glioblastomas using VASARI features at 3T[J]. Clin Imaging, 2023, 93: 86-92. DOI: 10.1016/j.clinimag.2022.10.011.
[32]
RUFFLE J K, MOHINTA S, BARUTEAU K P, et al. VASARI-auto: Equitable, efficient, and economical featurisation of glioma MRI[J/OL]. NeuroImage Clin, 2024, 44: 103668 [2025-07-13]. https://doi.org/10.1016/j.nicl.2024.103668. DOI: 10.1016/j.nicl.2024.103668.
[33]
LI Y L, JIANG B, JIANG X L, et al. MRI Imaging Features and Pathological Analysis of Intraparenchymal Ependymoma[J]. Chinese Journal of CT and MRI, 2023, 21(10): 20-22. DOI: 10.3969/j.issn.1672-5131.2023.10.007.
[34]
CHEN K Y, JIANG P C. Correlation between peritumoral edema of high-grade glioma andpatients' prognoses[J]. Chinese Journal of Clinical Neurosurgery, 2021, 26(5): 352-353, 359. DOI: 10.13798/j.issn.1009-153X.2021.05.011.
[35]
CAMPOS L G, OLIVEIRA F H, ANTUNES Á C M, et al. Evaluation of glial tumors: correlation between magnetic resonance imaging and histopathological analysis[J/OL]. Radiol Bras, 2024, 57: e20240025 [2025-07-13]. https://doi.org/10.1590/0100-3984.2024.0025. DOI: 10.1590/0100-3984.2024.0025.
[36]
RUDÀ R, BRUNO F, PELLERINO A, et al. Ependymoma: evaluation and management updates[J]. Curr Oncol Rep, 2022, 24: 985-993. DOI: 10.1007/s11912-022-01260-w.
[37]
CAO E D, LU Z Y, CAI H P, et al. Expression of JMJD6 and Ki67 and their correlation with pathological grade in glioma[J]. Chinese Journal of Nervous and Mental Diseases, 2022, 48(11): 681-686. DOI: 10.3969/j.issn.1002-0152.2022.11.007.
[38]
YANG R H, FAN W X, DONG T, et al. Predictive value of multi-sequence MRI radiomics fusion model for glioma grading[J]. Chinese Journal of Medical Physics, 2023, 40(5): 545-549. DOI: 10.3969/j.issn.1005-202X.2023.05.004.
[39]
LAI C, LONG J R, LARSEN B T, et al. Percutaneous biopsy of musculoskeletal tumors and the potential for needle tract seeding: technical considerations, current controversies, and outcomes[J]. Skeletal Radiol, 2023, 52(3): 505-516. DOI: 10.1007/s00256-022-04187-2.
[40]
CHEN C, ZHAO Y, CAI L, et al. A multi-modal deep learning model for prediction of Ki-67 for meningiomas using pretreatment MR images[J/OL]. NPJ Precis Oncol, 2025, 9(1): 21 [2025-07-13]. https://doi.org/10.1038/s41698-025-00811-1. DOI: 10.1038/s41698-025-00811-1.
[41]
ZHANG Y, CHAI R X, WANG D Z. Study on the correlation between DWl, lVlM, and DCE-MRI parameters and Ki-67 expression in soft tissue tumors[J]. Chin J Magn Reson Imaging, 2024, 15(10): 136-140, 147. DOI: 10.12015/issn.1674-8034.2024.10.023.
[42]
BHUIYAN E H, KHAN M M, HOSSAIN S A, et al. Classification of glioma grade and Ki-67 level prediction in MRI data: A SHAP-driven interpretation[J/OL]. Comput Med Imaging Graph, 2025, 124: 102578 [2025-07-13]. https://doi.org/10.1016/j.compmedimag.2025.102578. DOI: 10.1016/j.compmedimag.2025.102578.
[43]
ZHOU J N, ZHU Z Y, TIAN C S, et al. Research of Ki-67 expression in glioma by multimodal multi-parameter magnetic resonance imaging[J]. Chin J Magn Reson Imaging, 2024, 15(5): 34-40. DOI: 10.12015/issn.1674-8034.2024.05.007.

PREV Conventional MRI features combined with T1WI enhanced histogram analysis to differentiate glioblastoma from grade Ⅳ astrocytoma
NEXT Application of multiphase free-breathing real-time cine imaging in cardiac magnetic resonance for left ventricular function assessment
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn