Share:
Share this content in WeChat
X
Clinical Article
Application of multiphase free-breathing real-time cine imaging in cardiac magnetic resonance for left ventricular function assessment
JIN Yuqin  HUANG Yong  LIU Xiaoshan  YIN Xunhao  ZHANG Kexin  CHI Guoliang 

DOI:10.12015/issn.1674-8034.2025.11.016.


[Abstract] Objective To explore the value of multiphase real-time free-breathing cine imaging in cardiac function assessment compared with standard breath-hold cardiac cine MRI, thereby expanding the clinical applicability of magnetic resonance imaging (MRI) cardiac function evaluation.Materials and Methods Cardiac cine images were acquired from 42 healthy volunteers using a 3.0 T MRI system with both a multiphase real-time free-breathing cine sequence and a standard breath-hold cine sequence. A self-developed algorithm based on the signal intensity ratio between myocardium and blood pool was applied to rearrange the multiphase myocardial images into diastolic and systolic phases. Left ventricular functional parameters, including end-diastolic volume (EDV), end-systolic volume (ESV), ejection fraction (EF), stroke volume (SV), and myocardial mass (MASS), were quantified. Consistency and differences between the two methods were statistically compared.Results Real-time free-breathing cine images exhibited lower signal contrast between myocardium and blood pool compared to standard breath-hold imaging, yet remained sufficient for ventricular functional analysis. Multiphase cine data (120 phases) were successfully sorted, classified, and processed automatically to calculate cardiac functional parameters by tracking signal variations throughout the cardiac cycle. There was no statistically significant difference between the two methods in terms of cardiac function indicators such as EDV, ESV, EF, and MASS (P > 0.05), while the difference in SV was statistically significant (P < 0.05). All parameters demonstrated high consistency via correlation analysis with correlation coefficients 0.968 (EDV), 0.927 (ESV), 0.954 (SV), 0.942 (EF), and 0.953 (MASS) respectively (P < 0.001).Conclusions Real-time cine imaging under free-breathing conditions, performed without the need for breath-holding or electrocardiographic gating, significantly improves the applicability of cardiac magnetic resonance function assessment in patients unable to comply with breathing instructions. The newly developed data processing method ensures accurate evaluation of left ventricular function, offering a reliable alternative for clinical scenarios such as heart failure or cases where breath-hold compliance is unfeasible.
[Keywords] magnetic resonance imaging;ventricular function assessment;multiphase real-time free-breathing cine imaging;cardiac magnetic resonance cine;image data classification method

JIN Yuqin1   HUANG Yong1*   LIU Xiaoshan1   YIN Xunhao1   ZHANG Kexin1   CHI Guoliang2  

1 Department of Radiology, Shandong First Medical University Affiliated Tumor Hospital (Shandong Provincial Tumor Hospital), Jinan 250117, China

2 School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, China

Corresponding author: HUANG Y, E-mail: huangyong1970888@sina.com

Conflicts of interest   None.

Received  2025-08-09
Accepted  2025-10-26
DOI: 10.12015/issn.1674-8034.2025.11.016
DOI:10.12015/issn.1674-8034.2025.11.016.

[1]
KALOGEROPOULOS A P, KIM S, RAWAL S, et al. Serial changes in left ventricular ejection fraction and outcomes in outpatients with heart failure and preserved ejection fraction[J]. Am J Cardiol, 2019, 124(5): 729-735. DOI: 10.1016/j.amjcard.2019.05.052.
[2]
FARMAKIS D, SIMITSIS P, BISTOLA V, et al. Acute heart failure with mid-range left ventricular ejection fraction: clinical profile, in-hospital management, and short-term outcome[J]. Clin Res Cardiol, 2017, 106(5): 359-368. DOI: 10.1007/s00392-016-1063-0.
[3]
AOYANAGI H, NOCHIOKA K, SAKATA Y, et al. Temporal changes in left ventricular ejection fraction and their prognostic impacts in patients with Stage B heart failure[J/OL]. Int J Cardiol, 2020, 306: 123-132 [2025-08-08]. https://pubmed.ncbi.nlm.nih.gov/32113664/. DOI: 10.1016/j.ijcard.2020.02.040.
[4]
ALFAKIH K, REID S, JONES T, et al. Assessment of ventricular function and mass by cardiac magnetic resonance imaging[J]. Eur Radiol, 2004, 14(10): 1813-1822. DOI: 10.1007/s00330-004-2387-0.
[5]
SOZZI F B, IACUZIO L, BELMONTE M, et al. Early diagnosis of cardiomyopathies by cardiac magnetic resonance. Overview of the main criteria[J/OL]. Monaldi Arch Chest Dis, 2022 [2025-08-08]. https://pubmed.ncbi.nlm.nih.gov/35416001/. DOI: 10.4081/monaldi.2022.2151
[6]
PONTONE G, DI CESARE E, CASTELLETTI S, et al. Appropriate use criteria for cardiovascular magnetic resonance imaging (CMR): SIC-SIRM position paper part 1 (ischemic and congenital heart diseases, cardio-oncology, cardiac masses and heart transplant)[J]. Radiol Med, 2021, 126(3): 365-379. DOI: 10.1007/s11547-020-01332-6.
[7]
EICHHORN C, GREULICH S, BUCCIARELLI-DUCCI C, et al. Multiparametric cardiovascular magnetic resonance approach in diagnosing, monitoring, and prognostication of myocarditis[J]. JACC Cardiovasc Imaging, 2022, 15(7): 1325-1338. DOI: 10.1016/j.jcmg.2021.11.017.
[8]
SIGGINS C, PAN J A, LÖFFLER A I, et al. Cardiometabolic biomarker patterns associated with cardiac MRI defined fibrosis and microvascular dysfunction in patients with heart failure with preserved ejection fraction[J/OL]. Front Cardiovasc Med, 2024, 11: 1334226 [2025-08-08]. https://pubmed.ncbi.nlm.nih.gov/38500750/. DOI: 10.3389/fcvm.2024.1334226.
[9]
LISI C, CATAPANO F, RONDI P, et al. Multimodality imaging in cardio-oncology: the added value of CMR and CCTA[J/OL]. Br J Radiol, 2023, 96(1150): 20220999 [2025-08-08]. https://pubmed.ncbi.nlm.nih.gov/37493228/. DOI: 10.1259/bjr.20220999.
[10]
GALEA N, POLIZZI G, GATTI M, et al. Cardiovascular magnetic resonance (CMR) in restrictive cardiomyopathies[J]. Radiol Med, 2020, 125(11): 1072-1086. DOI: 10.1007/s11547-020-01287-8.
[11]
MOHAMED A A, ELMANCY L Y, ABULOLA S M, et al. Assessment of native myocardial T1 mapping for early detection of anthracycline-induced cardiotoxicity in patients with cancer: a systematic review and meta-analysis[J]. Cardiovasc Toxicol, 2024, 24(6): 563-575. DOI: 10.1007/s12012-024-09866-1.
[12]
BOTTINOR W, TRANKLE C R, HUNDLEY W G. The role of cardiovascular MRI in cardio-oncology[J]. Heart Fail Clin, 2021, 17(1): 121-133. DOI: 10.1016/j.hfc.2020.08.009.
[13]
Society of Cardiovascular Magnetic Resonance ChinaInternational Regional Committee, Cardiovascular Magnetic Resonance Branch of China International Exchange and Promotive Association for Medical and Health Care. Expert consensus on cardiovasular magnetic resonance imaging of China[J]. Chin J Med Imag Technol, 2019, 35(2): 161-169. DOI: 10.13929/j.1003-3289.201810056.
[14]
VÁZQUEZ-CALVO S, ROCA-LUQUE I, ALTHOFF T F. Management of ventricular arrhythmias in heart failure[J]. Curr Heart Fail Rep, 2023, 20(4): 237-253. DOI: 10.1007/s11897-023-00608-y.
[15]
CUI C, YIN G, LU M J, et al. Retrospective electrocardiography-gated real-time cardiac cine MRI at 3T: comparison with conventional segmented cine MRI[J]. Korean J Radiol, 2019, 20(1): 114-125. DOI: 10.3348/kjr.2018.0243.
[16]
VERMERSCH M, LONGÈRE B, COISNE A, et al. Compressed sensing real-time cine imaging for assessment of ventricular function, volumes and mass in clinical practice[J]. Eur Radiol, 2020, 30(1): 609-619. DOI: 10.1007/s00330-019-06341-2.
[17]
ROSENDAHL L, AHLANDER B M, BJÖRKLUND P G, et al. Image quality and myocardial scar size determined with magnetic resonance imaging in patients with permanent atrial fibrillation: a comparison of two imaging protocols[J]. Clin Physiol Funct Imaging, 2010, 30(2): 122-129. DOI: 10.1111/j.1475-097X.2009.00914.x.
[18]
KHONSARY S. Guyton and hall: textbook of medical physiology[J/OL]. Surg Neurol Int, 2017, 8(1): 275 [2025-08-07]. https://surgicalneurologyint.com/surgicalint-articles/guyton-and-hall-textbook-of-medical-physiology/. DOI: 10.4103/sni.sni_327_17.
[19]
BUSCH S A, BRUCE C D, SKOW R J, et al. Mechanisms of sympathetic regulation during apnea[J/OL]. Physiol Rep, 2019, 7(2): e13991 [2025-08-07]. https://pubmed.ncbi.nlm.nih.gov/30693670/. DOI: 10.14814/phy2.13991.
[20]
CROSS R, OLIVIERI L, O'BRIEN K, et al. Improved workflow for quantification of left ventricular volumes and mass using free-breathing motion corrected cine imaging[J/OL]. J Cardiovasc Magn Reson, 2016, 18: 10 [2025-08-07]. https://pubmed.ncbi.nlm.nih.gov/26915830/. DOI: 10.1186/s12968-016-0231-8.
[21]
BEIJNINK C W H, VAN DER HOEVEN N W, KONIJNENBERG L S F, et al. Cardiac MRI to visualize myocardial damage after ST-segment elevation myocardial infarction: a review of its histologic validation[J]. Radiology, 2021, 301(1): 4-18. DOI: 10.1148/radiol.2021204265.
[22]
LONGÈRE B, ALLARD P E, GKIZAS C V, et al. Compressed sensing real-time cine reduces CMR arrhythmia-related artifacts[J/OL]. J Clin Med, 2021, 10(15): 3274 [2025-08-07]. https://pubmed.ncbi.nlm.nih.gov/34362058/. DOI: 10.3390/jcm10153274.
[23]
KIDO T, KIDO T, NAKAMURA M, et al. Compressed sensing real-time cine cardiovascular magnetic resonance: accurate assessment of left ventricular function in a single-breath-hold[J/OL]. J Cardiovasc Magn Reson, 2016, 18(1): 50 [2025-08-07]. https://pubmed.ncbi.nlm.nih.gov/27553656/. DOI: 10.1186/s12968-016-0271-0.
[24]
LI Y Y, LIN L, WANG J, et al. Cardiac cine with compressed sensing real-time imaging and retrospective motion correction for free-breathing assessment of left ventricular function and strain in clinical practice[J]. Quant Imaging Med Surg, 2023, 13(4): 2262-2277. DOI: 10.21037/qims-22-596.
[25]
DENG Q, TANG L, WU X, et al. Feasibility of single-breath-hold compressed sensing real-time cine imaging for assessment of ventricular function and left ventricular strain in cardiac magnetic resonance[J]. J Sichuan Univ Med Sci, 2022, 53(3): 497-503. DOI: 10.12182/20220560506.
[26]
LI Y Y, LIN L, WANG J, et al. Application value of cardiac cine with compressed sensing real-time imaging and retrospective fully automated non-rigid motion correction for assessment of right ventricular function and strain in patients with pulmonary arterial hypertension[J]. Chin J Magn Reson Imag, 2022, 13(10): 114-120. DOI: 10.12015/issn.1674-8034.2022.10.017.
[27]
KRISHNAMOORTHY G, TOURAIS J, SMINK J, et al. Free-breathing 2D radial cine MRI with respiratory auto-calibrated motion correction (RAMCO)[J]. Magn Reson Med, 2023, 89(3): 977-989. DOI: 10.1002/mrm.29499.
[28]
MOUSSAVI A, MIßBACH S, SERRANO FERREL C, et al. Comparison of cine and real-time cardiac MRI in Rhesus macaques[J/OL]. Sci Rep, 2021, 11(1): 10713 [2025-08-08]. https://pubmed.ncbi.nlm.nih.gov/34021218/. DOI: 10.1038/s41598-021-90106-9.
[29]
KLEMENZ A C, REICHARDT L, GORODEZKY M, et al. Accelerated cardiac MRI with deep learning-based image reconstruction for cine imaging[J/OL]. Radiol Cardiothorac Imaging, 2024, 6(6): e230419 [2025-08-08]. https://pubmed.ncbi.nlm.nih.gov/39540821/. DOI: 10.1148/ryct.230419.
[30]
WEI R, CHEN J Y, LIANG B, et al. Real-time 3D MRI reconstruction from cine-MRI using unsupervised network in MRI-guided radiotherapy for liver cancer[J]. Med Phys, 2023, 50(6): 3584-3596. DOI: 10.1002/mp.16141.
[31]
YOON Y H, CHUN J, KISER K, et al. Inter-scanner super-resolution of 3D cine MRI using a transfer-learning network for MRgRT[J/OL]. Phys Med Biol, 2024, 69(11): 115038 [2025-08-08]. https://pubmed.ncbi.nlm.nih.gov/38663411/. DOI: 10.1088/1361-6560/ad43ab.

PREV Prediction of pathological grading and Ki-67 expression in intracranial extraventricular ependymomas based on VASARI quantitative features
NEXT Value of preoperative prediction of luminal and non-luminal subtypes of invasive breast cancer based on a dual-sequence interpretable machine learning model
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn