Share:
Share this content in WeChat
X
Clinical Article
Predicting microvascular invasion in hepatocellular carcinoma using Delta radiomics model based on Gd-EOB-DTPA enhanced MRI
XU Xiaoshuang  LUO Yi  LIANG Shiqi  CHEN Shaofang  Li Xinming  HU Genwen 

DOI:10.12015/issn.1674-8034.2025.11.018.


[Abstract] Objective To investigate the efficacy of Delta radiomics model based on gadoxetic acid disodium (Gd-EOB-DTPA) enhanced MRI for preoperative prediction of microvascular invasion (MVI) in hepatocellular carcinoma (HCC).Materials and Methods A total of 189 pathologically confirmed HCC patients were retrospectively enrolled (91 MVI-positive, 98 MVI-negative). Regions of interest (ROI) of the tumor were delineated on preoperative axial non-contrast T1-weighted imaging (T1WI) and Gd-EOB-DTPA-enhanced hepatobiliary phase (HBP) images. Radiomics feature extraction was performed to calculate Delta radiomics feature values. Feature selection was conducted through paired t-tests, Spearman correlation analysis, and least absolute shrinkage and selection operator (LASSO) algorithm. Logistic regression (LR) classifier was used for constructing three models (T1WI, HBP, and Delta), with receiver operating characteristic (ROC) curves generated to evaluate predictive performance.Results The Delta radiomics model based on LR algorithm demonstrated optimal performance, achieving area under the curve (AUC) of 0.888 (95% CI: 0.834 to 0.942) (training set) and 0.800 (95% CI: 0.687 to 0.913) (validation set). The combined model integrating Delta radiomics features with clinical baseline data showed superior predictive efficacy, with AUC of 0.898 (95% CI: 0.846 to 0.950) (training set) and 0.811 (95% CI: 0.702 to 0.921) (validation set).Conclusions The Gd-EOB-DTPA-enhanced MRI-based Delta radiomics model shows potential clinical value in preoperative MVI prediction for HCC patients. The combined model incorporating both Delta radiomics and clinical baseline parameters exhibits enhanced predictive performance.
[Keywords] hepatocellular carcinoma;magnetic resonance imaging;Gadoxetic acid disodium;radiomics;microvascular invasion

XU Xiaoshuang1   LUO Yi1   LIANG Shiqi1   CHEN Shaofang1   Li Xinming2   HU Genwen1*  

1 Department of Radiology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China

2 Department of Radiology, Zhujiang Hospital, Southern Medical University, Guangzhou 510630, China

Corresponding author: HU G W, E-mail: hugenwen@163.com

Conflicts of interest   None.

Received  2025-06-30
Accepted  2025-11-10
DOI: 10.12015/issn.1674-8034.2025.11.018
DOI:10.12015/issn.1674-8034.2025.11.018.

[1]
BRAY F, LAVERSANNE M, SUNG H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2024, 74(3): 229-263. DOI: 10.3322/caac.21834.
[2]
HOU J, LIU W Y. Advance of peritumoral radiomics research[J]. Chin J Magn Reson Imag, 2024, 15(3): 230-234. DOI: 10.12015/issn.1674-8034.2024.03.038.
[3]
WANG Q H, ZHOU Y J, YANG H A, et al. MRI-based clinical-radiomics nomogram model for predicting microvascular invasion in hepatocellular carcinoma[J]. Med Phys, 2024, 51(7): 4673-4686. DOI: 10.1002/mp.17087.
[4]
MENG X P, TANG T Y, DING Z M, et al. Preoperative microvascular invasion prediction to assist in surgical plan for single hepatocellular carcinoma: better together with radiomics[J]. Ann Surg Oncol, 2022, 29(5): 2960-2970. DOI: 10.1245/s10434-022-11346-1.
[5]
YANG J W, DONG X, JIN S Z, et al. Radiomics model of dynamic contrast-enhanced MRI for evaluating vessels encapsulating tumor clusters and microvascular invasion in hepatocellular carcinoma[J]. Acad Radiol, 2025, 32(1): 146-156. DOI: 10.1016/j.acra.2024.07.007.
[6]
LUO Z W, YU H Y, LIU H X, et al. The value of radiomics models based on hepatobiliary phase images of Gd-EOB-DTPA enhanced MRI in prediction of microvascular invasion classification in hepatocellular carcinoma[J]. Chin J Magn Reson Imag, 2023, 14(4): 95-101, 114. DOI: 10.12015/issn.1674-8034.2023.04.016.
[7]
YU Y X, FAN Y F, WANG X M, et al. Gd-EOB-DTPA-enhanced MRI radiomics to predict vessels encapsulating tumor clusters (VETC) and patient prognosis in hepatocellular carcinoma[J]. Eur Radiol, 2022, 32(2): 959-970. DOI: 10.1007/s00330-021-08250-9.
[8]
TIAN Y Q, HUA H, PENG Q Q, et al. Preoperative evaluation of Gd-EOB-DTPA-enhanced MRI radiomics-based nomogram in small solitary hepatocellular carcinoma (≤3 cm) with microvascular invasion: a two-center study[J]. J Magn Reson Imaging, 2022, 56(5): 1459-1472. DOI: 10.1002/jmri.28157.
[9]
ZHONG H, ZHANG Y, ZHU G B, et al. Preoperative prediction of microvascular invasion and relapse-free survival in hepatocellular Carcinoma ≥3 cm using CT radiomics: Development and external validation[J/OL]. BMC Med Imaging, 2025, 25(1): 141 [2025-07-05]. https://pubmed.ncbi.nlm.nih.gov/40312321/. DOI: 10.1186/s12880-025-01677-2.
[10]
ZHU Z, WU K Y, LU J, et al. Gd-EOB-DTPA-enhanced MRI radiomics and deep learning models to predict microvascular invasion in hepatocellular carcinoma: a multicenter study[J/OL]. BMC Med Imaging, 2025, 25(1): 105 [2025-07-05]. https://pubmed.ncbi.nlm.nih.gov/40165094. DOI: 10.1186/s12880-025-01646-9.
[11]
HUANG W R, PAN Y F, WANG H F, et al. Delta-radiomics analysis based on multi-phase contrast-enhanced MRI to predict early recurrence in hepatocellular carcinoma after percutaneous thermal ablation[J]. Acad Radiol, 2024, 31(12): 4934-4945. DOI: 10.1016/j.acra.2024.06.002.
[12]
Department of Medical Administration of the National Health Commission of the People's Republic of China. Guideline for diagnosis and treatment of primary liver cancer (2024 edition)[J]. Chin J Magn Reson Imaging, 2024, 15(6): 1-18. DOI: 10.12015/issn.1674-8034.2024.06.001.
[13]
JIAN W, ZHAN L, ZHAOWANG L, et al. Predicting microvascular invasion in solitary hepatocellular carcinoma: a multi-center study integrating clinical, MRI assessments, and radiomics indicators[J/OL]. Front Oncol, 2025, 15: 1511260 [2025-07-05]. https://pubmed.ncbi.nlm.nih.gov/40046630. DOI: 10.3389/fonc.2025.1511260.
[14]
MOKRANE F Z, LU L, VAVASSEUR A, et al. Radiomics machine-learning signature for diagnosis of hepatocellular carcinoma in cirrhotic patients with indeterminate liver nodules[J]. Eur Radiol, 2020, 30(1): 558-570. DOI: 10.1007/s00330-019-06347-w.
[15]
FAMULARO S, PENZO C, MAINO C, et al. Preoperative detection of hepatocellular carcinoma's microvascular invasion on CT-scan by machine learning and radiomics: a preliminary analysis[J/OL]. Eur J Surg Oncol, 2025, 51(1): 108274 [2025-07-05]. https://pubmed.ncbi.nlm.nih.gov/38538504. DOI: 10.1016/j.ejso.2024.108274.
[16]
LI J F, SONG W X, LI J X, et al. A clinical study exploring the prediction of microvascular invasion in hepatocellular carcinoma through the use of combined enhanced CT and MRI radiomics[J/OL]. PLoS One, 2025, 20(1): e0318232 [2025-07-05]. https://pubmed.ncbi.nlm.nih.gov/39874347. DOI: 10.1371/journal.pone.0318232.
[17]
YANG L H, CHEN M L, CHEN S, et al. The predictive value of MRI radiomics integrated with inflammatory factors for microvascular invasion in hepatocellular carcinoma[J]. Radiol Pract, 2024, 39(5): 585-590. DOI: 10.13609/j.cnki.1000-0313.2024.05.004.
[18]
ZHANG L, LI H Y, DAI Z J, et al. Improved diagnostic decision making for microvascular invasion in HCC using a novel nomogram incorporating delta radiomics and body composition factors: a multicenter study[J/OL]. Eur J Surg Oncol, 2025, 51(9): 110219 [2025-07-05]. https://pubmed.ncbi.nlm.nih.gov/40505357. DOI: 10.1016/j.ejso.2025.110219.
[19]
FUJITA N, USHIJIMA Y, ISHIMATSU K, et al. Multiparametric assessment of microvascular invasion in hepatocellular carcinoma using gadoxetic acid-enhanced MRI[J]. Abdom Radiol (NY), 2024, 49(5): 1467-1478. DOI: 10.1007/s00261-023-04179-3.
[20]
WEI J, JIANG H, ZENG M, et al. Prediction of microvascular invasion in hepatocellular carcinoma via deep learning: A multi-center and prospective validation study[J/OL]. Cancers (Basel), 2021, 13(10): 2368 [2025-01-01]. https://pubmed.ncbi.nlm.nih.gov/34068972. DOI: 10.3390/cancers13102368.
[21]
GUO Y W, GUO T T, SUN B, et al. A comparative study of FLIS and imaging signs derived from Gd-EOB-DTPA- enhanced MRI with albumin-bilirubin (ALBI) grade in evaluating liver function[J]. J Clin Radiol, 2024, 43(4): 585-590. DOI: 10.13437/j.cnki.jcr.2024.04.017.
[22]
YOON S, SHIM Y S, PARK S H, et al. Hepatobiliary phase imaging in cirrhotic patients using compressed sensing and controlled aliasing in parallel imaging results in higher acceleration[J]. Eur Radiol, 2024, 34(4): 2233-2243. DOI: 10.1007/s00330-023-10226-w.
[23]
KIM K A, KIM M J, JEON H M, et al. Prediction of microvascular invasion of hepatocellular carcinoma: usefulness of peritumoral hypointensity seen on gadoxetate disodium-enhanced hepatobiliary phase images[J]. J Magn Reson Imaging, 2012, 35(3): 629-634. DOI: 10.1002/jmri.22876.
[24]
LEE S, KIM S H, LEE J E, et al. Preoperative gadoxetic acid-enhanced MRI for predicting microvascular invasion in patients with single hepatocellular carcinoma[J]. J Hepatol, 2017, 67(3): 526-534. DOI: 10.1016/j.jhep.2017.04.024.
[25]
RENZULLI M, BROCCHI S, CUCCHETTI A, et al. Can current preoperative imaging be used to detect microvascular invasion of hepatocellular carcinoma?[J]. Radiology, 2016, 279(2): 432-442. DOI: 10.1148/radiol.2015150998.
[26]
WANG L L, ZHANG Y Y, LI J F, et al. A nomogram of magnetic resonance imaging for preoperative assessment of microvascular invasion and prognosis of hepatocellular carcinoma[J]. Dig Dis Sci, 2023, 68(12): 4521-4535. DOI: 10.1007/s10620-023-08022-z.
[27]
JI X Q, SHANG Y, TAN L, et al. Prediction of high-risk gastrointestinal stromal tumor recurrence based on delta-CT radiomics modeling: a 3-year follow-up study after surgery[J/OL]. Clin Med Insights Oncol, 2024, 18: 11795549241245698 [2025-07-05]. https://pubmed.ncbi.nlm.nih.gov/38628841. DOI: 10.1177/11795549241245698.
[28]
WANG M, XI Y, WANG L, et al. Predictive value of delta radiomics in xerostomia after chemoradiotherapy in patients with stage III-IV nasopharyngeal carcinoma[J/OL]. Radiat Oncol, 2024, 19(1): 26 [2025-07-05]. https://pubmed.ncbi.nlm.nih.gov/38418994. DOI: 10.1186/s13014-024-02417-6.
[29]
NARDONE V, REGINELLI A, GRASSI R, et al. Delta radiomics: a systematic review[J]. Radiol Med, 2021, 126(12): 1571-1583. DOI: 10.1007/s11547-021-01436-7.
[30]
HAN Z W, DAI H T, CHEN X L, et al. Delta-radiomics models based on multi-phase contrast-enhanced magnetic resonance imaging can preoperatively predict glypican-3-positive hepatocellular carcinoma[J/OL]. Front Physiol, 2023, 14: 1138239 [2025-07-05]. https://pubmed.ncbi.nlm.nih.gov/37601639. DOI: 10.3389/fphys.2023.1138239.
[31]
YAN Z, LIU Z, ZHU G, et al. Gadoxetic acid-enhanced MRI-based radiomic models for preoperative risk prediction and prognostic assessment of proliferative hepatocellular carcinoma[J]. Acad Radiol, 2025, 32(1): 157-169. DOI: 10.1016/j.acra.2024.07.040.
[32]
ZENG Q, KE M M, ZHONG L H, et al. Value of delta imageology based on dynamic contrast-enhanced MRI in predicting pathological complete relief of breast cancer after neoadjuvant therapy[J]. Chin J Radio, 2023(2): 157-165. DOI: 10.3760/cma.j.cn112149-20220706-00581.
[33]
XIONG D, LI J, LI L, et al. Delta-radiomics features combined with haematological index predict pathological complete response after neoadjuvant immunochemotherapy in resectable non-small cell lung cancer[J/OL]. Clin Radiol, 2025, 86: 106906 [2025-07-05]. https://pubmed.ncbi.nlm.nih.gov/40359608. DOI: 10.1016/j.crad.2025.106906.
[34]
PEEKEN J C, ASADPOUR R, SPECHT K, et al. MRI-based delta-radiomics predicts pathologic complete response in high-grade soft-tissue sarcoma patients treated with neoadjuvant therapy[J]. Radiother Oncol, 2021, 164: 73-82. DOI: 10.1016/j.radonc.2021.08.023.
[35]
XIA T Y, ZHOU Z H, MENG X P, et al. Predicting microvascular invasion in hepatocellular carcinoma using CT-based radiomics model[J/OL]. Radiology, 2023, 307(4): e222729 [2025-07-05]. https://pubmed.ncbi.nlm.nih.gov/37097141. DOI: 10.1148/radiol.222729.
[36]
BAKR S, ECHEGARAY S, SHAH R, et al. Noninvasive radiomics signature based on quantitative analysis of computed tomography images as a surrogate for microvascular invasion in hepatocellular carcinoma: a pilot study[J/OL]. J Med Imaging (Bellingham), 2017, 4(4): 041303 [2025-07-05]. https://pubmed.ncbi.nlm.nih.gov/28840174. DOI: 10.1117/1.JMI.4.4.041303.
[37]
ZENG Y, WU H, ZHU Y, et al. MRI-based intra-tumoral ecological diversity features and temporal characteristics for predicting microvascular invasion in hepatocellular carcinoma[J/OL]. Front Oncol, 2025, 15: 1510071 [2025-07-27]. https://pubmed.ncbi.nlm.nih.gov/40098699. DOI: 10.3389/fonc.2025.1510071.

PREV Value of preoperative prediction of luminal and non-luminal subtypes of invasive breast cancer based on a dual-sequence interpretable machine learning model
NEXT Explainable machine learning model based on DKI, IVIM, and clinical features for preoperative prediction of lymphovascular invasion in rectal cancer
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn