Share:
Share this content in WeChat
X
Clinical Article
Prediction of zonal heterogeneity in prostate cancer using multi-parametric magnetic resonance habitat imaging
YUAN Lei  ZHANG Jingliang  MA Lina  XIA Yuwei  HAN Ye  HOU Guorui  QIN Weijun  ZHANG Jing  HUAN Yi  REN Jing 

DOI:10.12015/issn.1674-8034.2025.11.021.


[Abstract] Objective To explore the feasibility of habitat imaging (HI) for non-invasive quantitative visualization of zonal heterogeneity and risk prediction in prostate cancer (PCa).Materials and Methods This retrospective study involved 147 patients who underwent multi-parametric magnetic resonance imaging (mpMRI) and confirmed PCa by radical prostatectomy (RP) at Xijing Hospital from January 2018 to August 2024. Patients were divided into training and test sets in a 7∶3 ratio. According to RP results, PCa was categorized into transition zone (TZ) and peripheral zone (PZ). The apparent diffusion coefficient (ADC), perfusion fraction (f) and mean kurtosis (MK) values of each voxel were integrated to delineated habitat subregions and generate habitat maps. The differences between PZ and TZ PCa were compared from multiple perspectives including clinical, pathological and imaging. According to the 2019 International Society of Urological Pathology (ISUP) guidelines, the habitat maps were matched with RP specimens to assess the ISUP grade of each subregion, and the patients were classified into low-risk (ISUP ≤ 2) and high-risk (ISUP ≥ 3) groups. Logistic regression analysis was applied to identify factors associated with high-risk PCa and to construct a predictive model called zone-based habitat imaging (zHI)-clinial imaging. Then the model's efficacy was evaluated.Results Habitat 1 had lower ADC, f and higher MK values compared to habitats 2 and 3. Compared with TZ, PZ PCa exhibited worse clinical and pathological features, with a higher proportion of habitat 1. Logistic regression analysis indicated that anatomical zone (OR = 3.50, 95% CI: 1.01 to 12.09) and the proportion of Habitat 1 (OR = 3.63, 95% CI: 1.37 to 9.62) were independent risk factors for high-risk PCa (P < 0.05). The area under the curve (AUC) of the zHI-clinical imaging model for risk assessment in the training and test sets were 0.889 (95% CI: 0.822 to 0.955) and 0.883 (95% CI: 0.740 to 0.925), respectively.Conclusions This study comprehensively verified the zonal heterogeneity of PCa and constructed a model based on anatomical zone and HI features, which demonstrated enhanced efficacy in non-invasive quantitative visualization and prediction of PCa risk.
[Keywords] habitat imaging;multi-parameteric magnetic resonance imaging;prostate cancer;risk degree;zonal heterogeneity;radical prostatectomy

YUAN Lei1   ZHANG Jingliang2   MA Lina1   XIA Yuwei3   HAN Ye1   HOU Guorui1   QIN Weijun2   ZHANG Jing4   HUAN Yi1   REN Jing1*  

1 Department of Radiology, Xijing Hospital, Air Force Medical University, Xi'an 710032, China

2 Department of Urology, Xijing Hospital, Air Force Medical University, Xi'an 710032, China

3 Department of Research and Development, Shanghai United Imaging Intelligence Co, Ltd, Shanghai 200232, China

4 Department of Pathology, Xijing Hospital, Air Force Medical University, Xi'an 710032, China

Corresponding author: REN J, E-mail: jrenmm@126.com

Conflicts of interest   None.

Received  2025-06-17
Accepted  2025-11-10
DOI: 10.12015/issn.1674-8034.2025.11.021
DOI:10.12015/issn.1674-8034.2025.11.021.

[1]
SIEGEL R L, GIAQUINTO A N, JEMAL A. Cancer statistics, 2024[J]. CA A Cancer J Clin, 2024, 74(1): 12-49. DOI: 10.3322/caac.21820.
[2]
QU M, GAO X. Prostate cancer in the world and China in 2022: an epidemiological analysis[J]. Acad J Nav Med Univ, 2025, 46(2): 229-233. DOI: 10.16781/j.CN31-2187/R.20240685.
[3]
XIA C F, DONG X S, LI H, et al. Cancer statistics in China and United States, 2022: profiles, trends, and determinants[J]. Chin Med J (Engl), 2022, 135(5): 584-590. DOI: 10.1097/CM9.0000000000002108.
[4]
DESANTIS C E, MILLER K D, DALE W, et al. Cancer statistics for adults aged 85 years and older, 2019[J]. CA Cancer J Clin, 2019, 69(6): 452-467. DOI: 10.3322/caac.21577.
[5]
ZHENG R S, CHEN R, HAN B F, et al. Cancer incidence and mortality in China, 2022[J]. Chin J Oncol, 2024, 46(3): 221-231. DOI: 10.3760/cma.j.cn112152-20240119-00035.
[6]
LIU X M, JIANG H O. The global, regional, and national prostate cancer burden and trends from 1990 to 2021, results from the global burden of disease study 2021[J/OL]. Front Public Health, 2025, 13: 1553747 [2025-06-16]. https://pubmed.ncbi.nlm.nih.gov/40469596/. DOI: 10.3389/fpubh.2025.1553747.
[7]
WANG B, LIU Z, YANG L, et al. Advances in the treatment of metastatic prostate cancer in China[J]. Cancer Biol Med, 2025, 22(5): 433–438. DOI: 10.20892/j.issn.2095-3941.2025.0065.
[8]
MCNEAL J E, REDWINE E A, FREIHA F S, et al. Zonal distribution of prostatic adenocarcinoma[J]. Am J Surg Pathol, 1988, 12(12): 897-906. DOI: 10.1097/00000478-198812000-00001.
[9]
WIBMER A, HRICAK H, GONDO T, et al. Haralick texture analysis of prostate MRI: utility for differentiating non-cancerous prostate from prostate cancer and differentiating prostate cancers with different gleason scores[J]. Eur Radiol, 2015, 25(10): 2840-2850. DOI: 10.1007/s00330-015-3701-8.
[10]
ALI A M, DU FEU A, OLIVEIRA P, et al. Prostate zones and cancer: lost in transition [J]. Nat Rev Urol, 2022, 19(2): 101-115. DOI: 10.1038/s41585-021-00524-7.
[11]
ALI A M, ELUMALAI T, VENKATESULU B, et al. Tale of two zones: investigating the clinical outcomes and research gaps in peripheral and transition zone prostate cancer through a systematic review and meta-analysis[J/OL]. BMJ Oncol, 2024, 3(1): e000193 [2025-06-16]. https://pubmed.ncbi.nlm.nih.gov/39886173/. DOI: 10.1136/bmjonc-2023-000193.
[12]
PATEL P, NALLANDHIGHAL S, SCOVILLE D, et al. Spatial transcriptomic profiling to characterize the nature of peripheral- versus transition-zone prostate cancer[J]. Eur Urol Focus, 2025, 11(2): 226-234. DOI: 10.1016/j.euf.2024.11.009.
[13]
ALANEZI S T, SULLIVAN F, KLEEFELD C, et al. Quantifying tumor heterogeneity from multiparametric magnetic resonance imaging of prostate using texture analysis[J/OL]. Cancers (Basel), 2022, 14(7): 1631 [2025-06-16]. https://pubmed.ncbi.nlm.nih.gov/35406403/. DOI: 10.3390/cancers14071631.
[14]
TETEREVA A, KNODT A R, MELZER T R, et al. Improving predictability, reliability, and generalizability of brain-wide associations for cognitive abilities via multimodal stacking[J/OL]. PNAS Nexus, 2025, 4(6): pgaf175 [2025-06-16]. https://pubmed.ncbi.nlm.nih.gov/40575708/. DOI: 10.1093/pnasnexus/pgaf175.
[15]
NG B, TAI C E A, ZENG E Z, et al. Enhancing trust in clinically significant prostate cancer prediction with multiple magnetic resonance imaging modalities[J/OL]. arXiv, 2024 [2025-06-16]. https://arxiv.org/pdf/2411.04662. DOI: 10.48550/arxiv.2411.04662.
[16]
XIAO Z J, REN J, HAN Y, et al. Comparative of imaging and pathology characters of prostate cancer in different anatomical zones[J]. J Pract Radiol, 2022(10): 1647-1650. DOI: 10.3969/j.issn.1002-1671.2022.10.020.
[17]
HAN Y, YUAN L, ZHANG J L, et al. Bi-parameter MRI could quantitatively assess the zonal heterogeneity of prostate cancer[J/OL]. Clin Genitourin Cancer, 2024, 22(5): 102135 [2025-06-16]. https://pubmed.ncbi.nlm.nih.gov/38917763/. DOI: 10.1016/j.clgc.2024.102135.
[18]
YUAN L, LI Y J, HUAN Y, et al. Application advances of tumor habitat imaging[J]. Int J Med Radiol, 2023, 46(6): 721-724. DOI: 10.19300/j.2023.z20836.
[19]
NAPEL S, MU W, JARDIM-PERASSI B V, et al. Quantitative imaging of cancer in the postgenomic era: Radio(geno)mics, deep learning, and habitats[J]. Cancer, 2018, 124(24): 4633-4649. DOI: 10.1002/cncr.31630.
[20]
TOLKACH Y, KRISTIANSEN G. The heterogeneity of prostate cancer: a practical approach[J]. Pathobiology, 2018, 85(1/2): 108-116. DOI: 10.1159/000477852.
[21]
VAN DER WALT S, SCHÖNBERGER J L, NUNEZ-IGLESIAS J, et al. Scikit-image: image processing in Python[J/OL]. PeerJ, 2014, 2: e453 [2025-06-16]. https://pubmed.ncbi.nlm.nih.gov/25024921/. DOI: 10.7717/peerj.453.
[22]
AVANTS B B, TUSTISON N J, SONG G, et al. A reproducible evaluation of ANTs similarity metric performance in brain image registration[J]. Neuroimage, 2011, 54(3): 2033-2044. DOI: 10.1016/j.neuroimage.2010.09.025.
[23]
TURKBEY B, ROSENKRANTZ A B, HAIDER M A, et al. Prostate imaging reporting and data system version 2.1: 2019 update of prostate imaging reporting and data system version 2[J]. Eur Urol, 2019, 76(3): 340-351. DOI: 10.1016/j.eururo.2019.02.033.
[24]
PEDREGOSA F, VAROQUAUX G, GRAMFORT A, et al. Scikit-learn: Machine Learning in Python[J]. Journal of Machine Learning Research, 2011, 12: 2825-2830. DOI: 10.48550/arXiv.1201.0490.
[25]
VAN LEENDERS G J L H, VAN DER KWAST T H, GRIGNON D J, et al. The 2019 international society of urological pathology (ISUP) consensus conference on grading of prostatic carcinoma[J/OL]. Am J Surg Pathol, 2020, 44(8): e87-e99 [2025-06-16]. https://pubmed.ncbi.nlm.nih.gov/32459716/. DOI: 10.1097/PAS.0000000000001497.
[26]
HACKMAN G, TAARI K, TAMMELA T L, et al. Randomised trial of adjuvant radiotherapy following radical prostatectomy versus radical prostatectomy alone in prostate cancer patients with positive margins or extracapsular extension[J]. Eur Urol, 2019, 76(5): 586-595. DOI: 10.1016/j.eururo.2019.07.001.
[27]
YANG A, ZHOU P. Progress of quantitative prediction of the pathologic complete response after neoadjuvant chemoradiotherapy for locally advanced rectal cancer with functional MRI[J]. Chin J Magn Reson Imag, 2024, 15(7): 210-215. DOI: 10.12015/issn.1674-8034.2024.07.035.
[28]
LUCARELLI N M, VILLANOVA I, MAGGIALETTI N, et al. Quantitative ADC: an additional tool in the evaluation of prostate cancer [J/OL]. J Pers Med, 2023, 13(9): 1378 [2025-06-16]. https://pubmed.ncbi.nlm.nih.gov/37763146/. DOI: 10.3390/jpm13091378.
[29]
NEMATOLLAHI H, MARACY M R, MOSLEHI M, et al. Comparison of diagnostic performance between diffusion models parameters and mono-exponential apparent diffusion coefficient in patients with prostate cancer: A systematic review and meta-analysis[J/OL]. J Res Med Sci, 2024, 29: 43 [2025-06-16]. https://pubmed.ncbi.nlm.nih.gov/40224195/. DOI: 10.4103/jrms.jrms_359_23.
[30]
TAVAKOLI A A, HIELSCHER T, BADURA P, et al. Contribution of dynamic contrast-enhanced and diffusion MRI to PI-RADS for detecting clinically significant prostate cancer[J]. Radiology, 2023, 306(1): 186-199. DOI: 10.1148/radiol.212692.
[31]
UEDA Y, TAKAHASHI S, OHNO N, et al. Triexponential function analysis of diffusion-weighted MRI for diagnosing prostate cancer[J]. J Magn Reson Imaging, 2016, 43(1): 138-148. DOI: 10.1002/jmri.24974.
[32]
BALAHA H M, AYYAD S M, ALKSAS A, et al. Precise prostate cancer assessment using IVIM-based parametric estimation of blood diffusion from DW-MRI[J/OL]. Bioengineering (Basel), 2024, 11(6): 629 [2025-06-16]. https://pubmed.ncbi.nlm.nih.gov/38927865/. DOI: 10.3390/bioengineering11060629.
[33]
LAWRENCE E M, WARREN A Y, PRIEST A N, et al. Evaluating prostate cancer using fractional tissue composition of radical prostatectomy specimens and pre-operative diffusional kurtosis magnetic resonance imaging[J/OL]. PLoS One, 2016, 11(7): e0159652 [2025-06-16]. https://pubmed.ncbi.nlm.nih.gov/27467064/. DOI: 10.1371/journal.pone.0159652.
[34]
ZHOU K P, HUANG H B, BU C, et al. Sub-differentiation of PI-RADS 3 lesions in TZ by advanced diffusion-weighted imaging to aid the biopsy decision process[J/OL]. Front Oncol, 2023, 13: 1092073 [2025-06-16]. https://pubmed.ncbi.nlm.nih.gov/36845749/. DOI: 10.3389/fonc.2023.1092073.
[35]
YU J Y, GUO D J, LUO Y D, et al. Value of histogram analysis of quantitative parameters in dynamic contrastenhanced magnetic resonance imaging in diagnosis of prostate cancer[J]. J Third Mil Med Univ, 2017, 39(22): 2206-2213. DOI: 10.16016/j.1000-5404.201708017.

PREV Application research of cellular microstructural parameters based on magnetic resonance in predicting lymph node metastasis and tumor deposit of rectal cancer
NEXT The diagnostic value of based on the PI-RADS v2.1 score of Bp-MRI combined with PSAD risk stratification for predicting tPSA 4-20 ng/mL in clinically significant prostate cancer
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn