Share:
Share this content in WeChat
X
Original Article
Experimental study on diagnosis of metabolic dysfunction-associated steatohepatitis using different models of multi-b-value diffusion-weighted magnetic resonance imaging
ZHANG Yutong  XIE Shuangshuang  DU Xinzhe  WANG Xuyang  QIN Jiaming  YANG Jiaqi  SHEN Wen 

DOI:10.12015/issn.1674-8034.2025.11.025.


[Abstract] Objective To investigate the diagnostic efficacy of multi-b-value diffusion-weighted imaging (DWI) based on six diffusion models for metabolic dysfunction-associated steatohepatitis (MASH).Materials and Methods Thirty sprague-dawley (SD) rats were randomly divided into three groups (10 rats each) using a random number table: normal control group, metabolic-associated fatty liver (MAFL) group, and MASH group. The MAFL and MASH groups were modeled by feeding a high-fat diet for 10 weeks and 14 weeks, respectively. After modeling, all rats underwent liver multi-b-value DWI. Six models were used to process the data and obtain quantitative parameters of liver parenchyma: mono-exponential model, intravoxel incoherent motion (IVIM) model, diffusion kurtosis imaging (DKI) model, stretched-exponential model (SEM), fractional order calculus (FROC) model, and continuous-time random walk (CTRW) model. The mono-exponential model parameters included apparent diffusion coefficient (ADC), the IVIM model parameters included pure diffusion coefficient (IVIM_D), pseudo-diffusion coefficient (IVIM_D*), perfusion fraction (IVIM_f), the DKI model parameters included mean diffusion coefficient (DKI_MD), mean kurtosis coefficient (DKI_MK), the SEM model parameters included distributed diffusion coefficient (SEM_DDC), heterogeneity index (SEM_α), the FROC model parameters included diffusion coefficient (FROC_D), spatial parameter (FROC_μ), the CTRW model parameters included anomalous diffusion coefficient (CTRW_D), spatial diffusion heterogeneity index (CTRW_β) and temporal diffusion heterogeneity index (CTRW_α). For the single-exponential model, ADC1 was obtained using conventional two b-values, and ADC2 was obtained using multi-b-values. Immediately after MRI examination, the rats were euthanized, and liver specimens were collected for pathological analysis to obtain the nonalcoholic fatty liver disease (NAFLD) activity score (NAS). One-way analysis of variance (ANOVA) or Kruskal-Wallis test was used to compare parameter differences among groups. Spearman rank correlation analysis was used to explore the correlation between MRI quantitative parameters and NAS. The diagnostic efficacy of each parameter for MASH was analyzed using the receiver operating characteristic (ROC) curve.Results The quantitative parameters of liver parenchyma, including ADC2, IVIM_D, DKI_MD, DKI_MK, SEM_DDC, FROC_D, CTRW_D, and CTRW_α, showed statistically significant differences between any two groups (P<0.05). ADC1, SEM_α and FROC_β only differed between the normal group and MASH group (P < 0.05). ADC1, ADC2, IVIM_D, DKI_MD, SEM_DDC, SEM_α, FROC_D, FROC_β, CTRW_D, and CTRW_α were negatively correlated with NAS (r = -0.479 to -0.886), while IVIM_f and DKI_MK were positively correlated with NAS (r = 0.460, 0.860). ROC curve analysis showed that ADC2, IVIM_D, DKI_MD, DKI_MK, SEM_DDC, SEM_α, FROC_D, FROC_β, CTRW_D, and CTRW_α had moderate to high diagnostic efficacy for MASH (area under the curve: 0.780 to 0.960). Among them, ADC2, DKI_MK, and FROC_D were significantly superior to SEM_α and FROC_β (P < 0.05).Conclusions Multiple diffusion models can be used for MASH diagnosis, with the ADC value from the multi-b-value mono-exponential model, MK value from the DKI model, and D value from the FROC model demonstrating the best efficacy and are expected to become the best parameters for non-invasive diagnosis of MASH as an alternative to liver biopsy.
[Keywords] metabolic dysfunction-associated fatty liver;metabolic dysfunction-associated steatohepatitis;magnetic resonance imaging;diffusion weighted imaging;multi-b-value

ZHANG Yutong1, 2   XIE Shuangshuang2   DU Xinzhe2, 3   WANG Xuyang3   QIN Jiaming2, 3   YANG Jiaqi1, 2   SHEN Wen2*  

1 Department of Radiology, First Central Hospital of Tianjin Medical University, Tianjin 300192, China

2 Department of Radiology, Tianjin First Central Hospital, Tianjin Institute of Imaging Medicine, Tianjin 300192, China

3 The School of Medicine, Nankai University, Tianjin 300071, China.

Corresponding author: SHEN W, E-mail: shenwen66happy@126.com

Conflicts of interest   None.

Received  2025-07-08
Accepted  2025-11-10
DOI: 10.12015/issn.1674-8034.2025.11.025
DOI:10.12015/issn.1674-8034.2025.11.025.

[1]
SANDIREDDY R, SAKTHIVEL S, GUPTA P, et al. Systemic impacts of metabolic dysfunction-associated steatotic liver disease (MASLD) and metabolic dysfunction-associated steatohepatitis (MASH) on heart, muscle, and kidney related diseases[J/OL]. Front Cell Dev Biol, 2024, 12: 1433857 [2025-10-12]. https://pubmed.ncbi.nlm.nih.gov/39086662/. DOI: 10.3389/fcell.2024.1433857.
[2]
GOFTON C, UPENDRAN Y, ZHENG M H, et al. MAFLD: how is it different from NAFLD [J]. Clin Mol Hepatol, 2023, 29(Suppl): S17-S31. DOI: 10.3350/cmh.2022.0367.
[3]
LEKAKIS V, PAPATHEODORIDIS G V. Natural history of metabolic dysfunction-associated steatotic liver disease[J]. Eur J Intern Med, 2024, 122: 3-10. DOI: 10.1016/j.ejim.2023.11.005.
[4]
APOSTOLO D, FERREIRA L L, VINCENZI F, et al. From MASH to HCC: the role of Gas6/TAM receptors[J/OL]. Front Immunol, 2024, 15: 1332818 [2025-10-12]. https://pubmed.ncbi.nlm.nih.gov/37940495/. DOI: 10.3389/fimmu.2024.1332818.
[5]
WEI S, WANG L, EVANS P C, et al. NAFLD and NASH: etiology, targets and emerging therapies[J/OL]. Drug Discov Today, 2024, 29(3): 103910 [2025-10-12]. https://pubmed.ncbi.nlm.nih.gov/38301798/. DOI: 10.1016/j.drudis.2024.103910.
[6]
JARA M, NORLIN J, KJÆR M S, et al. Modulation of metabolic, inflammatory and fibrotic pathways by semaglutide in metabolic dysfunction-associated steatohepatitis[J]. Nat Med, 2025, 31(9): 3128-3140. DOI: 10.1038/s41591-025-03799-0.
[7]
DO A, ZAHRAWI F, MEHAL W Z. Therapeutic landscape of metabolic dysfunction-associated steatohepatitis (MASH)[J]. Nat Rev Drug Discov, 2025, 24(3): 171-189. DOI: 10.1038/s41573-024-01084-2.
[8]
LI C, YE J, PENG Y, et al. Evaluation of diffusion kurtosis imaging in stratification of nonalcoholic fatty liver disease and early diagnosis of nonalcoholic steatohepatitis in a rabbit model[J]. Magn Reson Imaging, 2019, 63: 267-273. DOI: 10.1016/j.mri.2019.08.032.
[9]
SHEKA A C, ADEYI O, THOMPSON J, et al. Nonalcoholic steatohepatitis: a review[J]. JAMA, 2020, 323(12): 1175-1183. DOI: 10.1001/jama.2020.2298.
[10]
ZONCAPÈ M, LIGUORI A, TSOCHATZIS E A. Non-invasive testing and risk-stratification in patients with MASLD[J]. Eur J Intern Med, 2024, 122: 11-19. DOI: 10.1016/j.ejim.2024.01.013.
[11]
NOUREDDIN M, TRUONG E, GORNBEIN J A, et al. MRI-based (MAST) score accurately identifies patients with NASH and significant fibrosis[J]. J Hepatol, 2022, 76(4): 781-787. DOI: 10.1016/j.jhep.2021.11.012.
[12]
LEFEBVRE T, HÉBERT M, BILODEAU L, et al. Intravoxel incoherent motion diffusion-weighted MRI for the characterization of inflammation in chronic liver disease[J]. Eur Radiol, 2021, 31(3): 1347-1358. DOI: 10.1007/s00330-020-07203-y.
[13]
VOLNIANSKY A, LEFEBVRE T L, KULBAY M, et al. Inter-visit and inter-reader reproducibility of multi-parametric diffusion-weighted MR imaging in longitudinally imaged patients with metabolic dysfunction-associated fatty liver disease and healthy volunteers[J/OL]. Magn Reson Imaging, 2024, 113: 110223 [2025-10-12]. https://pubmed.ncbi.nlm.nih.gov/39181478/. DOI: 10.1016/j.mri.2024.110223.
[14]
JOO I, LEE J M, YOON J H, et al. Nonalcoholic fatty liver disease: intravoxel incoherent motion diffusion-weighted MR imaging-an experimental study in a rabbit model[J]. Radiology, 2014, 270(1): 131-140. DOI: 10.1148/radiol.13122506.
[15]
TIAN L, LIU S B, ZHOU H, et al. DWI-derived sequences: application in the evaluation of liver fibrosis[J/OL]. Curr Med Imag Rev, 2025, 20: e15734056326012 [2025-10-12]. https://pubmed.ncbi.nlm.nih.gov/39838678/. DOI: 10.2174/0115734056326012241031074233.
[16]
DING Y J, ZHU H Q, LI Y H, et al. Continuous-time random walk and fractional order Calculus models histogram analysis of glioma biomarkers, including IDH1, ATRX, MGMT, and TERT, on differentiation[J]. Quant Imaging Med Surg, 2025, 15(7): 6118-6136. DOI: 10.21037/qims-2024-2725.
[17]
SHENG Y R, CHANG H, XUE K, et al. Characterization of prostatic cancer lesion and gleason grade using a continuous-time random-walk diffusion model at high b-values[J/OL]. Front Oncol, 2024, 14: 1389250 [2025-10-12]. https://pubmed.ncbi.nlm.nih.gov/38854720/. DOI: 10.3389/fonc.2024.1389250.
[18]
LI C H, WEN Y, XIE J H, et al. Preoperative prediction of VETC in hepatocellular carcinoma using non-Gaussian diffusion-weighted imaging at high b values: a pilot study[J/OL]. Front Oncol, 2023, 13: 1167209 [2025-10-12]. https://pubmed.ncbi.nlm.nih.gov/37305565/. DOI: 10.3389/fonc.2023.1167209.
[19]
XIE J H, LI C H, CHEN Y D, et al. Potential value of the stretched exponential and fractional order Calculus model in discriminating between hepatocellular carcinoma and intrahepatic cholangiocarcinoma: an animal experiment of orthotopic xenograft nude mice[J/OL]. Curr Med Imaging, 2023 [2025-10-12]. https://pubmed.ncbi.nlm.nih.gov/36946482/. DOI: 10.2174/1573405619666230322123117.
[20]
SHENG R F, ZHANG Y F, SUN W, et al. Staging chronic hepatitis B related liver fibrosis with a fractional order Calculus diffusion model[J]. Acad Radiol, 2022, 29(7): 951-963. DOI: 10.1016/j.acra.2021.07.005.
[21]
JIANG Y L, LI J, ZHANG P F, et al. Staging liver fibrosis with various diffusion-weighted magnetic resonance imaging models[J]. World J Gastroenterol, 2024, 30(9): 1164-1176. DOI: 10.3748/wjg.v30.i9.1164.
[22]
CHOWDHURY A B, MEHTA K J. Liver biopsy for assessment of chronic liver diseases: a synopsis[J]. Clin Exp Med, 2023, 23(2): 273-285. DOI: 10.1007/s10238-022-00799-z.
[23]
FAN J G, XU X Y, YANG R X, et al. Guideline for the prevention and treatment of metabolic dysfunction-associated fatty liver disease (version 2024)[J]. J Clin Transl Hepatol, 2024, 12(11): 955-974. DOI: 10.14218/JCTH.2024.00311.
[24]
GUO R, LU F, LIN J, et al. Multi-b-value DWI to evaluate the synergistic antiproliferation and anti-heterogeneity effects of bufalin plus sorafenib in an orthotopic HCC model[J/OL]. Eur Radiol Exp, 2024, 8(1): 43 [2025-10-12]. https://pubmed.ncbi.nlm.nih.gov/38467904/. DOI: 10.1186/s41747-024-00448-y.
[25]
CHAN S W, LIN C A, OUYANG Y C, et al. Characterizing breast tumor heterogeneity through IVIM-DWI parameters and signal decay analysis[J/OL]. Diagnostics (Basel), 2025, 15(12): 1499 [2025-10-12]. https://pubmed.ncbi.nlm.nih.gov/40564820/. DOI: 10.3390/diagnostics15121499.
[26]
REN H, XU H, YANG D W, et al. Intravoxel incoherent motion assessment of liver fibrosis staging in MASLD[J]. Abdom Radiol (NY), 2024, 49(5): 1411-1418. DOI: 10.1007/s00261-024-04207-w.
[27]
TROELSTRA M A, WITJES J J, VAN DIJK A M, et al. Assessment of imaging modalities against liver biopsy in nonalcoholic fatty liver disease: the Amsterdam NAFLD-NASH cohort[J]. J Magn Reson Imaging, 2021, 54(6): 1937-1949. DOI: 10.1002/jmri.27703.
[28]
MURPHY P, HOOKER J, ANG B, et al. Associations between histologic features of nonalcoholic fatty liver disease (NAFLD) and quantitative diffusion-weighted MRI measurements in adults[J]. J Magn Reson Imaging, 2015, 41(6): 1629-1638. DOI: 10.1002/jmri.24755.
[29]
LI Z H, DAN G Y, TAMMANA V, et al. Predicting the aggressiveness of peripheral zone prostate cancer using a fractional order Calculus diffusion model[J/OL]. Eur J Radiol, 2021, 143: 109913 [2025-10-12]. https://pubmed.ncbi.nlm.nih.gov/34464907/. DOI: 10.1016/j.ejrad.2021.109913.
[30]
REN H W, LIU Y, LU J, et al. Evaluating the clinical value of MRI multi-model diffusion-weighted imaging on liver fibrosis in chronic hepatitis B patients[J]. Abdom Radiol (NY), 2021, 46(4): 1552-1561. DOI: 10.1007/s00261-020-02806-x.
[31]
HE L T, LI F, QIN Y J, et al. Enhanced preoperative prediction of breast lesion pathology, prognostic biomarkers, and molecular subtypes using multiple models diffusion-weighted MR imaging[J/OL]. Sci Rep, 2025, 15(1): 4704 [2025-10-12]. https://pubmed.ncbi.nlm.nih.gov/39922806/. DOI: 10.1038/s41598-024-81713-3.
[32]
HUA L, GUO Q Y, TANG Y F, et al. Using non-Gaussian diffusion models to distinguish benign from malignant head and neck lesions[J/OL]. Front Oncol, 2025, 15: 1581637 [2025-10-12]. https://pubmed.ncbi.nlm.nih.gov/40510142/. DOI: 10.3389/fonc.2025.1581637.
[33]
LI C, YE J, PRINCE M, et al. Comparing mono-exponential, bi-exponential, and stretched-exponential diffusion-weighted MR imaging for stratifying non-alcoholic fatty liver disease in a rabbit model[J]. Eur Radiol, 2020, 30(11): 6022-6032. DOI: 10.1007/s00330-020-07005-2.
[34]
LEMKE A, LAUN F B, SIMON D, et al. An in vivo verification of the intravoxel incoherent motion effect in diffusion-weighted imaging of the abdomen[J]. Magn Reson Med, 2010, 64(6): 1580-1585. DOI: 10.1002/mrm.22565.
[35]
LIU J, HUA L, WANG F, et al. Comparison of four MRI diffusion models to differentiate benign from metastatic retropharyngeal lymph nodes[J/OL]. Eur Radiol Exp, 2025, 9(1): 50 [2025-10-12]. https://pubmed.ncbi.nlm.nih.gov/40358858/. DOI: 10.1186/s41747-025-00590-1.
[36]
STABINSKA J, WITTSACK H J, LERMAN L O, et al. Probing renal microstructure and function with advanced diffusion MRI: concepts, applications, challenges, and future directions[J]. J Magn Reson Imaging, 2024, 60(4): 1259-1277. DOI: 10.1002/jmri.29127.

PREV A meta-learning-based MRI multimodal classification model for differentiating osteoarthritis with synovitis from rheumatoid arthritis
NEXT The study on image quality and quantitative parameters of diffusion-weighted imaging reconstructed based on intelligent quick magnetic resonance technology in prostate cancer
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn