Share:
Share this content in WeChat
X
Review
MRI advances in central changes related to diabetic peripheral neuropathy
GU Congcong  LÜ Yanan  JIANG Xingyue 

DOI:10.12015/issn.1674-8034.2025.11.029.


[Abstract] Diabetic peripheral neuropathy (DPN), as a common chronic complication of diabetes, has a high incidence. Early diagnosis and treatment are essential. With the advantages of high soft tissue resolution, non-invasive, multi-parameter, and multi-directional imaging, MRI technology has shown great potential in early diagnosis, pathogenesis exploration, and efficacy monitoring of DPN, and is expected to become a reliable quantitative evaluation method. This article is mainly based on structural and functional magnetic resonance imaging and other technologies, it provides a review of the differences in central nervous system changes among different subtypes of DPN, and identifies current research limitations, points out future study directions, and aims to offer clues for clinical diagnosis and treatment.
[Keywords] diabetic peripheral neuropathy;magnetic resonance imaging;structural magnetic resonance imaging;functional magnetic resonance imaging;magnetic resonance spectroscopic imaging;perfusion-weighted imaging

GU Congcong   LÜ Yanan   JIANG Xingyue*  

Department of Radiology, Affiliated Hospital of Binzhou Medical College, Binzhou 256603, China

Corresponding author: JIANG X Y, E-mail: xyjiang188@sina.com

Conflicts of interest   None.

Received  2025-08-05
Accepted  2025-11-10
DOI: 10.12015/issn.1674-8034.2025.11.029
DOI:10.12015/issn.1674-8034.2025.11.029.

[1]
SUN H, SAEEDI P, KARURANGA S, et al. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045[J/OL]. Diabetes Res Clin Pract, 2022, 183: 109119 [2025-08-05]. https://pmc.ncbi.nlm.nih.gov/articles/PMC11057359/. DOI: 10.1016/j.diabres.2021.109119.
[2]
JOSHI G, DAS A, VERMA G, et al. Viral infection and host immune response in diabetes[J]. IUBMB Life, 2024, 76(5): 242-266. DOI: 10.1002/iub.2794.
[3]
GREGG E W, PRATT A, OWENS A, et al. The burden of diabetes-associated multiple long-term conditions on years of life spent and lost[J]. Nat Med, 2024, 30(10): 2830-2837. DOI: 10.1038/s41591-024-03123-2.
[4]
BILAL A, PRATLEY R. Diabetes and cardiovascular disease in older adults[J]. Ann N Y Acad Sci, 2025, 1543(1): 42-67. DOI: 10.1111/nyas.15259.
[5]
CHANG M C, YANG S. Diabetic peripheral neuropathy essentials: a narrative review[J]. Ann Palliat Med, 2023, 12(2): 390-398. DOI: 10.21037/apm-22-693.
[6]
ELAFROS M A, ANDERSEN H, BENNETT D L, et al. Towards prevention of diabetic peripheral neuropathy: clinical presentation, pathogenesis, and new treatments[J]. Lancet Neurol, 2022, 21(10): 922-936. DOI: 10.1016/S1474-4422(22)00188-0.
[7]
HAKIM S, JAIN A, ADAMSON S S, et al. Macrophages protect against sensory axon loss in peripheral neuropathy[J]. Nature, 2025, 640(8057): 212-220. DOI: 10.1038/s41586-024-08535-1.
[8]
CHITNENI A, RUPP A, GHORAYEB J, et al. Early Detection of Diabetic Peripheral Neuropathy by fMRI: An Evidence-Based Review[J/OL]. Brain Sci, 2022, 12(5): 557 [2025-08-05]. https://pmc.ncbi.nlm.nih.gov/articles/PMC9139132/. DOI: 10.3390/brainsci12050557.
[9]
CHONG Z Z, MENKES D L, SOUAYAH N. Targeting neuroinflammation in distal symmetrical polyneuropathy in diabetes[J/OL]. Drug Discov Today, 2024, 29(8): 104087 [2025-08-05]. https://doi.org/10.1016/j.drudis.2024.104087. DOI: 10.1016/j.drudis.2024.104087.
[10]
YANG T, QI F, GUO F, et al. An update on chronic complications of diabetes mellitus: from molecular mechanisms to therapeutic strategies with a focus on metabolic memory[J/OL]. Mol Med, 2024, 30(1): 71 [2025-08-05]. https://pmc.ncbi.nlm.nih.gov/articles/PMC11128119/. DOI: 10.1186/s10020-024-00824-9.
[11]
ALEXANDER M, CHO E, GLIOZHENI E, et al. Pathology of Diabetes-Induced Immune Dysfunction[J/OL]. Int J Mol Sci, 2024, 25(13): 7105 [2025-08-05]. https://pmc.ncbi.nlm.nih.gov/articles/PMC11241249/. DOI: 10.3390/ijms25137105.
[12]
SLOAN G, SELVARAJAH D, TESFAYE S. Pathogenesis, diagnosis and clinical management of diabetic sensorimotor peripheral neuropathy[J]. Nat Rev Endocrinol, 2021, 17(7): 400-420. DOI: 10.1038/s41574-021-00496-z.
[13]
GALIERO R, CATURANO A, VETRANO E, et al. Peripheral Neuropathy in Diabetes Mellitus: Pathogenetic Mechanisms and Diagnostic Options[J/OL]. Int J Mol Sci, 2023, 24(4): 3554 [2025-08-05]. https://pmc.ncbi.nlm.nih.gov/articles/PMC9967934/. DOI: 10.3390/ijms24043554.
[14]
ABUZINADAH A R, ALRAWAILI M S, ALSHAREEF A A, et al. Values and diagnostic accuracy of sensory nerve action potentials in control participants and participants with diabetes with and without clinical diabetic neuropathy, based on neuropathy scale measurements[J/OL]. Brain Behav, 2024, 14(2): e3423 [2025-08-05]. https://pmc.ncbi.nlm.nih.gov/articles/PMC10864687/. DOI: 10.1002/brb3.3423.
[15]
DING X, YIN L, ZHANG L, et al. Diabetes accelerates Alzheimer's disease progression in the first year post mild cognitive impairment diagnosis[J]. Alzheimers Dement, 2024, 20(7): 4583-4593. DOI: 10.1002/alz.13882.
[16]
XU Z, ZHAO L, YIN L, et al. Support Vector Machine for Stratification of Cognitive Impairment Using 3D T1WI in Patients with Type 2 Diabetes Mellitus[J]. Diabetes Metab Syndr Obes, 2025, 18: 435-451. DOI: 10.2147/DMSO.S480317.
[17]
GOTO M, ABE O, HAGIWARA A, et al. Advantages of Using Both Voxel- and Surface-based Morphometry in Cortical Morphology Analysis: A Review of Various Applications[J]. Magn Reson Med Sci, 2022, 21(1): 41-57. DOI: 10.2463/mrms.rev.2021-0096.
[18]
LI X, ZHANG W, LIU J N, et al. Correlation between cortical atrophy and cognitive function in pre-diabetes and type 2 diabetes mellitus[J]. Chin J Magn Reson Imaging, 2024, 15(4): 9-14, 19. DOI: 10.12015/issn.1674-8034.2024.04.002.
[19]
HANSEN T M, MUTHULINGAM J A, BROCK B, et al. Reduced gray matter brain volume and cortical thickness in adults with type 1 diabetes and neuropathy[J]. Neurosci Res, 2022, 176: 66-72. DOI: 10.1016/j.neures.2021.10.002.
[20]
SELVARAJAH D, WILKINSON I D, MAXWELL M, et al. Magnetic resonance neuroimaging study of brain structural differences in diabetic peripheral neuropathy[J]. Diabetes Care, 2014, 37(6): 1681-1688. DOI: 10.2337/dc13-2610.
[21]
SELVARAJAH D, SLOAN G, TEH K, et al. Structural Brain Alterations in Key Somatosensory and Nociceptive Regions in Diabetic Peripheral Neuropathy[J]. Diabetes Care, 2023, 46(4): 777-785. DOI: 10.2337/dc22-1123.
[22]
NOVO J L, RUAS J J, FERREIRA L M, et al. Thalamic volumetric abnormalities in type 1 diabetes mellitus and 'peripheral' neuropathy[J/OL]. Sci Rep, 2022, 12(1): 13053 [2025-08-05]. https://pmc.ncbi.nlm.nih.gov/articles/PMC9338092/. DOI: 10.1038/s41598-022-16699-x.
[23]
MUSEN G, LYOO I K, SPARKS C R, et al. Effects of type 1 diabetes on gray matter density as measured by voxel-based morphometry[J]. Diabetes, 2006, 55(2): 326-333. DOI: 10.2337/diabetes.55.02.06.db05-0520.
[24]
BURGESS J, DE BEZENAC C, KELLER S S, et al. Brain alterations in regions associated with end-organ diabetic microvascular disease in diabetes mellitus: A UK Biobank study[J/OL]. Diabetes Metab Res Rev, 2024, 40(2): e3772 [2025-08-05]. https://doi.org/10.1002/dmrr.3772. DOI: 10.1002/dmrr.3772.
[25]
CHEN Y, WANG Y, SONG Z, et al. Abnormal white matter changes in Alzheimer's diseasebased on diffusion tensor imaging: A systematic review[J/OL]. Ageing Res Rev, 2023, 87: 101911 [2025-08-05]. https://doi.org/10.1016/j.arr.2023.101911. DOI: 10.1016/j.arr.2023.101911.
[26]
MOOSHAGE C M, TSILINGIRIS D, SCHIMPFLE L, et al. A diminished sciatic nerve structural integrity is associated with distinct peripheral sensory phenotypes in individuals with type 2 diabetes[J]. Diabetologia, 2024, 67(2): 275-289. DOI: 10.1007/s00125-023-06050-y.
[27]
CHEN Y, BARAZ J, XUAN S Y, et al. Multiparametric Quantitative MRI of Peripheral Nerves in the Leg: A Reliability Study[J]. J Magn Reson Imaging, 2024, 59(2): 563-574. DOI: 10.1002/jmri.28778.
[28]
YUN W N, OH E, PARK H K, et al. Diagnostic performances of diffusion tensor imaging and T2-mapping in diabetic peripheral neuropathy: Age- and diabetes duration-matched study using multi-parametric approach[J]. Br J Radiol, 2025, 98(1174): 1690-1697. DOI: 10.1093/bjr/tqaf091.
[29]
FIRAT Z, EKINCI G, SCHULZ D. Diffusion tensor imaging with tractography to predict memory deficits in patient groups with temporal lobe lesions[J/OL]. J Clin Neurosci, 2025, 140: 111526 [2025-08-05]. https://doi.org/10.1016/j.jocn.2025.111526. DOI: 10.1016/j.jocn.2025.111526.
[30]
FANG F, LUO Q, GE R, et al. Decreased Microstructural Integrity of the Central Somatosensory Tracts in Diabetic Peripheral Neuropathy[J]. J Clin Endocrinol Metab, 2021, 106(6): 1566-1575. DOI: 10.1210/clinem/dgab158.
[31]
VAEGGEMOSE M, HAAKMA W, PHAM M, et al. Diffusion tensor imaging MR Neurography detects polyneuropathy in type 2 diabetes[J/OL]. J Diabetes Complications, 2020, 34(2): 107439 [2025-08-05]. https://doi.org/10.1016/j.jdiacomp.2019.107439. DOI: 10.1016/j.jdiacomp.2019.107439.
[32]
FOESLEITNER O, SULAJ A, STURM V, et al. Diffusion MRI in Peripheral Nerves: Optimized b Values and the Role of Non-Gaussian Diffusion[J]. Radiology, 2022, 302(1): 153-161. DOI: 10.1148/radiol.2021204740.
[33]
HUANG X, DIAO Z, SHEN D, et al. Macrostructural and microstructural alterations of hippocampal subregions in T2DM: NODDI provides added value to DTI and volumetric analyses[J/OL]. Brain Res Bull, 2025, 228: 111417 [2025-08-05]. https://doi.org/10.1016/j.brainresbull.2025.111417. DOI: 10.1016/j.brainresbull.2025.111417.
[34]
JI G, CUI Z, D'ARCY R C N, et al. Imaging brain white matter function using resting-state functional MRI[J]. Sci Bull (Beijing), 2025, 70(9): 1384-1388. DOI: 10.1016/j.scib.2024.11.001.
[35]
LI M, SCHILLING K G, XU L, et al. White matter engagement in brain networks assessed by integration of functional and structural connectivity[J/OL]. Neuroimage, 2024, 302: 120887 [2025-08-05]. https://doi.org/10.1016/j.neuroimage.2024.120887. DOI: 10.1016/j.neuroimage.2024.120887.
[36]
ZHANG D, HUANG Y, ZHANG X, et al. Potential effects of peripheral neuropathy on brain function in patients with type 2 diabetes mellitus[J/OL]. Front Endocrinol (Lausanne), 2024, 15: 1448225 [2025-08-05]. https://pmc.ncbi.nlm.nih.gov/articles/PMC11586158/. DOI: 10.3389/fendo.2024.1448225.
[37]
BISWAL B B, UDDIN L Q. The history and future of resting-state functional magnetic resonance imaging[J]. Nature, 2025, 641(8065): 1121-1131. DOI: 10.1038/s41586-025-08953-9.
[38]
JING J, LIU C, ZHU W, et al. Increased Resting-State Functional Connectivity as a Compensatory Mechanism for Reduced Brain Volume in Prediabetes and Type 2 Diabetes[J]. Diabetes Care, 2023, 46(4): 819-827. DOI: 10.2337/dc22-1998.
[39]
HE M, JI B, CHENG L Q, et al. Changes of cerebral function in patients with early diabetic kidney disease based on regional homogeniety and seed-based functional connectivity[J]. Chin J Magn Reson Imaging, 2024, 15(10): 62-68. DOI: 10.12015/issn.1674-8034.2024.10.011.
[40]
XIN H, FU Y, FENG M, et al. Altered Intrinsic Brain Activity Related to Neurologic and Motor Dysfunction in Diabetic Peripheral Neuropathy Patients[J]. The Journal of Clinical Endocrinology & Metabolism, 2023, 108(4): 802-811. DOI: 10.1210/clinem/dgac651.
[41]
CROOSU S S, ROIKJER J, MORCH C D, et al. Alterations in Functional Connectivity of Thalamus and Primary Somatosensory Cortex in Painful and Painless Diabetic Peripheral Neuropathy[J]. Diabetes Care, 2023, 46(1): 173-182. DOI: 10.2337/dc22-0587.
[42]
ZHANG D, HUANG Y, GUAN Y, et al. Characterization of changes in the resting-state intrinsic network in patients with diabetic peripheral neuropathy[J/OL]. Sci Rep, 2024, 14(1): 28809 [2025-08-05]. https://pmc.ncbi.nlm.nih.gov/articles/PMC11579012/. DOI: 10.1038/s41598-024-80216-5.
[43]
SLOAN G, TEH K, CAUNT S, et al. Increased Thalamocortical Functional Connectivity on Discontinuation of Treatment in Painful Diabetic Peripheral Neuropathy[J]. Diabetes, 2024, 73(9): 1486-1494. DOI: 10.2337/db23-0931.
[44]
LI J, ZHANG W, WANG X, et al. Functional magnetic resonance imaging reveals differences in brain activation in response to thermal stimuli in diabetic patients with and without diabetic peripheral neuropathy[J/OL]. PLoS One, 2018, 13(1): e0190699 [2025-08-05]. https://pmc.ncbi.nlm.nih.gov/articles/PMC5755882/. DOI: 10.1371/journal.pone.0190699.
[45]
SAVELIEFF M G, ELAFROS M A, VISWANATHAN V, et al. The global and regional burden of diabetic peripheral neuropathy[J]. Nat Rev Neurol, 2025, 21(1): 17-31. DOI: 10.1038/s41582-024-01041-y.
[46]
VENKATARAMAN K, PUN V, MOHAMED A Z, et al. Altered Motor and Motor Perceptual Cognitive Imagery Task-Related Activation in Diabetic Peripheral Neuropathy: Insights From Functional MRI[J]. Diabetes Care, 2019, 42(10): 2004-2007. DOI: 10.2337/dc19-0746.
[47]
KOUSH Y, ROTHMAN D L, BEHAR K L, et al. Human brain functional MRS reveals interplay of metabolites implicated in neurotransmission and neuroenergetics[J]. J Cereb Blood Flow Metab, 2022, 42(6): 911-934. DOI: 10.1177/0271678X221076570.
[48]
GANDHI R, SELVARAJAH D, SLOAN G, et al. Preservation of thalamic neuronal function may be a prerequisite for pain perception in diabetic neuropathy: A magnetic resonance spectroscopy study[J/OL]. Front Pain Res (Lausanne), 2022, 3: 1086887 [2025-08-05]. https://pmc.ncbi.nlm.nih.gov/articles/PMC9852821/. DOI: 10.3389/fpain.2022.1086887.
[49]
HANSEN T M, FROKJAER J B, SELVARAJAH D, et al. Reduced Thalamic Volume and Metabolites in Type 1 Diabetes with Polyneuropathy[J]. Exp Clin Endocrinol Diabetes, 2022, 130(5): 327-334. DOI: 10.1055/a-1347-2579.
[50]
SELVARAJAH D, WILKINSON I D, DAVIES J, et al. Central nervous system involvement in diabetic neuropathy[J]. Curr Diab Rep, 2011, 11(4): 310-322. DOI: 10.1007/s11892-011-0205-z.
[51]
SLOAN G, ANTON A, CAUNT S, et al. Higher Sensory Cortical Energy Metabolism in Painful Diabetic Neuropathy: Evidence From a Cerebral Magnetic Resonance Spectroscopy Study[J]. Diabetes, 2023, 72(7): 1028-1034. DOI: 10.2337/db23-0051.
[52]
LI M, LI Y, TAN X, et al. Resting-state neural activity and cerebral blood flow alterations in type 2 diabetes mellitus: Insights from hippocampal subfields[J/OL]. Brain Behav, 2024, 14(7): e3600 [2025-08-05]. https://pmc.ncbi.nlm.nih.gov/articles/PMC11237339/. DOI: 10.1002/brb3.3600.
[53]
SELVARAJAH D, WILKINSON I D, GANDHI R, et al. Microvascular perfusion abnormalities of the Thalamus in painful but not painless diabetic polyneuropathy: a clue to the pathogenesis of pain in type 1 diabetes[J]. Diabetes Care, 2011, 34(3): 718-720. DOI: 10.2337/dc10-1550.
[54]
KISSOON N R, LEMAHIEU A M, STOLTENBERG A D, et al. Quantitative assessment of painful diabetic peripheral neuropathy after high-frequency spinal cord stimulation: a pilot study[J]. Pain Med, 2023, 24(Suppl 2): S41-S47. DOI: 10.1093/pm/pnad087.
[55]
ZHANG Y, ZHANG X, MA G, et al. Neurovascular coupling alterations in type 2 diabetes: a 5-year longitudinal MRI study[J/OL]. BMJ Open Diabetes Res Care, 2021, 9(1): e001433 [2025-08-05]. https://pmc.ncbi.nlm.nih.gov/articles/PMC7816934/. DOI: 10.1136/bmjdrc-2020-001433.
[56]
HOSTRUP S N, LIND H P, CROOSU S S, et al. Multimodal MRI analysis selecting key brain features for machine learning based classification of diabetic neuropathic pain and phenotypes[J/OL]. J Neurol Sci, 2025, 478: 123701 [2025-08-05]. https://doi.org/10.1016/j.jns.2025.123701. DOI: 10.1016/j.jns.2025.123701.

PREV A case of mesenteric lymphatic malformation and literature review
NEXT Research progress of MRI in brain structure and function changes of obese patients after weight loss and metabolism surgery
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn