Share:
Share this content in WeChat
X
Review
Research progress of MRI in brain structure and function changes of obese patients after weight loss and metabolism surgery
JI Xiaoqi  LIU Ao  SUN Yongbing  ZHANG Xueyi  ZOU Zhi  LI Zhonglin  WU Xiaoling  ZHOU Jing  QIAN Liwei  WANG Yong  LIU Min  MA Xiao  HAO Yibin  LI Yongli 

DOI:10.12015/issn.1674-8034.2025.11.030.


[Abstract] Obesity is a chronic disease caused by abnormal or excessive accumulation of adipose tissue, which poses a significant health risk. Bariatric metabolic surgery (BMS), as an effective intervention for obesity, not only achieves long-term stable weight loss, but also induces dynamic remodeling of the central nervous system, which results in dynamic recovery of brain structures and reversible remodeling of limbic system functional pathways. In addition, BMS can contribute to weight loss and induce multidimensional brain functional remodeling through multiple mechanisms, such as reducing cravings for high-calorie foods, alleviating brain inflammation, and restoring neural signaling homeostasis. As a core non-invasive imaging technology, magnetic resonance imaging (MRI) plays an irreplaceable role in the field of neuroimaging. At present, there is a lack of review on the mechanism of brain structure and function remodeling after BMS surgery using multimodal MRI. Therefore, this study reviews the research results of multimodal MRI in recent years, analyzes the limitations of previous studies, and looks forward to the possible exploration direction in the future, aiming to explore the brain structure and function remodeling law of obese patients under BMS intervention, and provides a theoretical basis for the study of neurobiological mechanism and intervention strategy of obesity.
[Keywords] obesity;bariatric metabolic surgery;magnetic resonance imaging;functional magnetic resonance imaging;neuroimaging;brain remodeling

JI Xiaoqi1   LIU Ao1   SUN Yongbing1   ZHANG Xueyi1   ZOU Zhi2   LI Zhonglin2   WU Xiaoling3   ZHOU Jing4   QIAN Liwei5   WANG Yong6   LIU Min7   MA Xiao8   HAO Yibin9   LI Yongli4*  

1 Department of Medical Imaging, Zhengzhou University People's Hospital, Zhengzhou 450003, China

2 Department of Medical Imaging, Henan Provincial People's Hospital, Zhengzhou 450003, China

3 Department of Nuclear Medicine, Henan Provincial People's Hospital, Zhengzhou 450003, China

4 Department of Health Management, Henan Provincial People's Hospital, Henan Provincial Key Laboratory of Chronic Disease, Zhengzhou 450003, China

5 Department of Hemangioma, Henan Provincial People's Hospital, Zhengzhou 450003, China

6 Department of General Practice, Henan Provincial People's Hospital, Zhengzhou 450003, China

7 Department of Hypertension, Henan Provincial People's Hospital, Zhengzhou 450003, China

8 Medical Examination Center, China-Japan Friendship Hospital, Beijing 100029, China

9 Hospital Offices, Henan Provincial People's Hospital, Zhengzhou 450003, China

Corresponding author: LI Y L,E-mail: shyliyongli@126.com

Conflicts of interest   None.

Received  2025-09-03
Accepted  2025-10-30
DOI: 10.12015/issn.1674-8034.2025.11.030
DOI:10.12015/issn.1674-8034.2025.11.030.

[1]
Department of Medical Administration, National Health Commission of the People's Republic of China. Chinese guidelines for the clinical management of obesity (2024 edition)[J]. Med J Peking Union Med Coll Hosp, 2025, 16(1): 90-108. DOI: 10.12290/xhyxzz.2024-0918.
[2]
POWELL-WILEY T M, POIRIER P, BURKE L E, et al. Obesity and cardiovascular disease: a scientific statement from the American heart association[J/OL]. Circulation, 2021, 143(21): e984-e1010 [2025-09-02]. https://pubmed.ncbi.nlm.nih.gov/33882682/. DOI: 10.1161/CIR.0000000000000973.
[3]
STEVENS S D. Comment on: a review of brain structural and functional changes using MRI technology in patients who received bariatric surgery[J]. Surg Obes Relat Dis, 2025, 21(1): 92-93. DOI: 10.1016/j.soard.2024.10.005.
[4]
LV H, ZENG N, LI M Y, et al. Association between body mass index and brain health in adults: a 16-year population-based cohort and mendelian randomization study[J/OL]. Health Data Sci, 2024, 4: 0087 [2025-09-02]. https://pubmed.ncbi.nlm.nih.gov/38500551/. DOI: 10.34133/hds.0087.
[5]
Chinese Society of Thyroid and Metabolism Surgery, Chinese Society of Surgery, Chinese Medical Association;Chinese Society for Metabolic&Bariatric Surgery, Chinese College of Surgeons, Chinese Medical Doctor Association. Chinese clinical guidelines for the surgery of obesity andmetabolic disorders(2024 edition)[J]. Chin J Pract Surg, 2024, 44(8): 841-849. DOI: 10.19538/j.cjps.issn1005-2208.2024.08.01.
[6]
ZEIGHAMI Y, ICETA S, DADAR M, et al. Spontaneous neural activity changes after bariatric surgery: a resting-state fMRI study[J/OL]. Neuroimage, 2021, 241: 118419 [2025-09-02]. https://pubmed.ncbi.nlm.nih.gov/34302967/. DOI: 10.1016/j.neuroimage.2021.118419.
[7]
BARRETT T S, HAFERMANN J O, RICHARDS S, et al. Obesity treatment with bariatric surgery vs GLP-1 receptor agonists[J]. JAMA Surg, 2025, 160(11): 1232-1239. DOI: 10.1001/jamasurg.2025.3590.
[8]
LI G Y, HU Y, ZHANG W C, et al. Brain functional and structural magnetic resonance imaging of obesity and weight loss interventions[J]. Mol Psychiatry, 2023, 28(4): 1466-1479. DOI: 10.1038/s41380-023-02025-y.
[9]
DARCEY V L, GUO J E, CHI M, et al. Striatal dopamine tone is positively associated with body mass index in humans as determined by PET using dual dopamine type-2 receptor antagonist tracers[J/OL]. medRxiv, 2023: 2023@@.09.27.23296169 [2025-09-02]. https://pubmed.ncbi.nlm.nih.gov/37886556/. DOI: 10.1101/2023.09.27.23296169.
[10]
MORYS F, TREMBLAY C, RAHAYEL S, et al. Neural correlates of obesity across the lifespan[J/OL]. Commun Biol, 2024, 7(1): 656 [2025-09-02]. https://pubmed.ncbi.nlm.nih.gov/38806652/. DOI: 10.1038/s42003-024-06361-9.
[11]
MATURANA-QUIJADA P, STEWARD T, VILARRASA N, et al. Dynamic Fronto-amygdalar interactions underlying emotion-regulation deficits in women at higher weight[J]. Obesity (Silver Spring), 2023, 31(9): 2283-2293. DOI: 10.1002/oby.23830.
[12]
ASANO S, OGAWA A, OSADA T, et al. Reduced gray matter volume in the default-mode network associated with insulin resistance[J]. Cereb Cortex, 2023, 33(23): 11225-11234. DOI: 10.1093/cercor/bhad358.
[13]
GÓMEZ-APO E, MONDRAGÓN-MAYA A, FERRARI-DÍAZ M, et al. Structural brain changes associated with overweight and obesity[J/OL]. J Obes, 2021, 2021: 6613385 [2025-09-02]. https://pubmed.ncbi.nlm.nih.gov/34327017/. DOI: 10.1155/2021/6613385.
[14]
QIAO Y-S, TANG X Y, CHAI Y-H, et al. Cerebral blood flow alterations and obesity: a systematic review and meta-analysis[J]. J Alzheimers Dis, 2022, 90(1): 15-31. DOI: 10.3233/jad-220601.
[15]
LI L, YU H, ZHONG M, et al. Gray matter volume alterations in subjects with overweight and obesity: Evidence from a voxel-based meta-analysis[J/OL]. Front Psychiatry, 2022, 13: 955741 [2025-09-02]. https://pubmed.ncbi.nlm.nih.gov/36226110/. DOI: 10.3389/fpsyt.2022.955741.
[16]
LIU L, JI G, LI G Y, et al. Structural changes in brain regions involved in executive-control and self-referential processing after sleeve gastrectomy in obese patients[J]. Brain Imaging Behav, 2019, 13(3): 830-840. DOI: 10.1007/s11682-018-9904-2.
[17]
CUSTERS E, VREEKEN D, KLEEMANN R, et al. Long-term brain structure and cognition following bariatric surgery[J/OL]. JAMA Netw Open, 2024, 7(2): e2355380 [2025-09-02]. https://pubmed.ncbi.nlm.nih.gov/38334996/. DOI: 10.1001/jamanetworkopen.2023.55380.
[18]
MICHAUD A, DADAR M, PELLETIER M, et al. Neuroanatomical changes in white and grey matter after sleeve gastrectomy[J/OL]. Neuroimage, 2020, 213: 116696 [2025-09-02]. https://pubmed.ncbi.nlm.nih.gov/32145436/. DOI: 10.1016/j.neuroimage.2020.116696.
[19]
BRUCE A S, BRUCE J M, NESS A R, et al. A comparison of functional brain changes associated with surgical versus behavioral weight loss[J]. Obesity (Silver Spring), 2014, 22(2): 337-343. DOI: 10.1002/oby.20630.
[20]
DU L X, ROY S, WANG P, et al. Unveiling the future: Advancements in MRI imaging for neurodegenerative disorders[J/OL]. Ageing Res Rev, 2024, 95: 102230 [2025-09-02]. https://www.sciencedirect.com/science/article/pii/S1568163724000485?via%3Dihub. DOI: 10.1016/j.arr.2024.102230.
[21]
DIETZE L M F, MCWHINNEY S R, RADUA J, et al. Extended and replicated white matter changes in obesity: Voxel-based and region of interest meta-analyses of diffusion tensor imaging studies[J/OL]. Front Nutr, 2023, 10: 1108360 [2025-09-02]. https://pubmed.ncbi.nlm.nih.gov/36960197/. DOI: 10.3389/fnut.2023.1108360.
[22]
ARNOLDUSSEN I A C, GUSTAFSON D R, LEIJSEN E M C, et al. Adiposity is related to cerebrovascular and brain volumetry outcomes in the RUN DMC study[J/OL]. Neurology, 2019, 93(9): e864-e878 [2025-09-02]. https://pubmed.ncbi.nlm.nih.gov/31363056/. DOI: 10.1212/WNL.0000000000008002.
[23]
ZHANG D, SHEN C Y, CHEN N G, et al. Long-term obesity impacts brain morphology, functional connectivity and cognition in adults[J]. Nat Ment Health, 2025, 3(4): 466-478. DOI: 10.1038/s44220-025-00396-5.
[24]
WANG J, LI G Y, JI G, et al. Habenula volume and functional connectivity changes following laparoscopic sleeve gastrectomy for obesity treatment[J]. Biol Psychiatry, 2024, 95(10): 916-925. DOI: 10.1016/j.biopsych.2023.07.009.
[25]
HU Y, JI G, LI G Y, et al. Laparoscopic sleeve gastrectomy improves brain connectivity in obese patients[J]. J Neurol, 2020, 267(7): 1931-1940. DOI: 10.1007/s00415-020-09780-w.
[26]
LEGAULT M, PELLETIER M, LACHANCE A, et al. Sustained improvements in brain health and metabolic markers 24 months following bariatric surgery[J/OL]. Brain Commun, 2024, 6(5): fcae336 [2025-09-02]. https://pubmed.ncbi.nlm.nih.gov/39403074/. DOI: 10.1093/braincomms/fcae336.
[27]
JI G N, ZHU C R, WANG S C, et al. Body composition changes and predictor of weight loss in short term after sleeve gastrectomy[J]. Obes Surg, 2025, 35(5): 1761-1768. DOI: 10.1007/s11695-025-07830-8.
[28]
GANGEMI E, PIERVINCENZI C, MALLIO C A, et al. Impact of sleeve gastrectomy on brain structural integrity[J]. Obes Surg, 2024, 34(9): 3203-3215. DOI: 10.1007/s11695-024-07416-w.
[29]
NOTA M H C, VREEKEN D, WIESMANN M, et al. Obesity affects brain structure and function- rescue by bariatric surgery?[J/OL]. Neurosci Biobehav Rev, 2020, 108: 646-657 [2025-09-02]. https://pubmed.ncbi.nlm.nih.gov/31794778/. DOI: 10.1016/j.neubiorev.2019.11.025.
[30]
RIBEIRO G, OLIVEIRA-MAIA A J. Sweet taste and obesity[J/OL]. Eur J Intern Med, 2021, 92: 3-10 [2025-09-02]. https://pubmed.ncbi.nlm.nih.gov/33593659/. DOI: 10.1016/j.ejim.2021.01.023.
[31]
AL-ALSHEIKH A S, ALABDULKADER S, MIRAS A D, et al. Effects of bariatric surgery and dietary interventions for obesity on brain neurotransmitter systems and metabolism: a systematic review of positron emission tomography (PET) and single-photon emission computed tomography (SPECT) studies[J/OL]. Obes Rev, 2023, 24(11): e13620 [2025-09-02]. https://pubmed.ncbi.nlm.nih.gov/37699864/. DOI: 10.1111/obr.13620.
[32]
RIBEIRO G, MAIA A N, COTOVIO G, et al. Striatal dopamine D2-like receptors availability in obesity and its modulation by bariatric surgery: a systematic review and meta-analysis[J/OL]. Sci Rep, 2023, 13(1): 4959 [2025-09-02]. https://pubmed.ncbi.nlm.nih.gov/36973321/. DOI: 10.1038/s41598-023-31250-2.
[33]
LAPO PAIS M, CRISÓSTOMO J, ABRUNHOSA A, et al. PET/fMRI demonstrates that bariatric surgery may reverse striatal dopaminergic dysfunction in women with obesity[J/OL]. Commun Med (Lond), 2025, 5(1): 375 [2025-09-02]. https://pubmed.ncbi.nlm.nih.gov/40877587/. DOI: 10.1038/s43856-025-01079-z.
[34]
TAN H E, SISTI A C, JIN H, et al. The gut-brain axis mediates sugar preference[J]. Nature, 2020, 580(7804): 511-516. DOI: 10.1038/s41586-020-2199-7.
[35]
KARLSSON H K, TUOMINEN L, HELIN S M, et al. Mesolimbic opioid-dopamine interaction is disrupted in obesity but recovered by weight loss following bariatric surgery[J/OL]. Transl Psychiatry, 2021, 11(1): 259 [2025-09-02]. https://pubmed.ncbi.nlm.nih.gov/33934103/. DOI: 10.1038/s41398-021-01370-2.
[36]
SEYFRIED F, PHETCHARABURANIN J, GLYMENAKI M, et al. Roux-en-Y gastric bypass surgery in Zucker rats induces bacterial and systemic metabolic changes independent of caloric restriction-induced weight loss[J]. Gut Microbes, 2021, 13(1): 1-20. DOI: 10.1080/19490976.2021.1875108.
[37]
DEAN Y E, MOHAMED M I, SHOKRI A, et al. Bariatric surgery and remission of metabolic syndrome: a meta-analysis of randomised controlled trials and prospective studies[J]. Obes Surg, 2025, 35(4): 1337-1349. DOI: 10.1007/s11695-025-07750-7.
[38]
PRÉVOST M, CRÉPIN D, RIFAI S A, et al. The resistin/TLR4/miR-155-5p axis: a novel signaling pathway in the onset of hypothalamic neuroinflammation[J/OL]. J Neuroinflammation, 2025, 22(1): 198 [2025-09-02]. https://pubmed.ncbi.nlm.nih.gov/40759954/. DOI: 10.1186/s12974-025-03522-3.
[39]
WU Z P, GAO Z G, QIAO Y H, et al. Long-term results of bariatric surgery in adolescents with at least 5 years of follow-up: a systematic review and meta-analysis[J]. Obes Surg, 2023, 33(6): 1730-1745. DOI: 10.1007/s11695-023-06593-4.
[40]
ALZAID H, SIMON J J, BRUGNARA G, et al. Hypothalamic subregion alterations in anorexia nervosa and obesity: Association with appetite-regulating hormone levels[J]. Int J Eat Disord, 2024, 57(3): 581-592. DOI: 10.1002/eat.24137.
[41]
SPINDLER M, ÖZYURT J, THIEL C M. Automated diffusion-based parcellation of the hypothalamus reveals subunit-specific associations with obesity[J/OL]. Sci Rep, 2020, 10(1): 22238 [2025-09-02]. https://pubmed.ncbi.nlm.nih.gov/33335266/. DOI: 10.1038/s41598-020-79289-9.
[42]
DISCHINGER U, KÖTZNER L, KOVATCHEVA-DATCHARY P, et al. Hypothalamic integrity is necessary for sustained weight loss after bariatric surgery: a prospective, cross-sectional study[J/OL]. Metabolism, 2023, 138: 155341 [2025-09-02]. https://pubmed.ncbi.nlm.nih.gov/36341838/. DOI: 10.1016/j.metabol.2022.155341.
[43]
SEWAYBRICKER L E, HUANG A, CHANDRASEKARAN S, et al. The significance of hypothalamic inflammation and gliosis for the pathogenesis of obesity in humans[J]. Endocr Rev, 2023, 44(2): 281-296. DOI: 10.1210/endrev/bnac023.
[44]
BROWN S S G, WESTWATER M L, SEIDLITZ J, et al. Hypothalamic volume is associated with body mass index[J/OL]. Neuroimage Clin, 2023, 39: 103478 [2025-09-02]. https://pubmed.ncbi.nlm.nih.gov/37558541/. DOI: 10.1016/j.nicl.2023.103478.
[45]
BARKHOLT P, PEDERSEN P J, HAY-SCHMIDT A, et al. Alterations in hypothalamic gene expression following Roux-en-Y gastric bypass[J]. Mol Metab, 2016, 5(4): 296-304. DOI: 10.1016/j.molmet.2016.01.006.
[46]
LIU Q Q, YANG X, LUO M X, et al. An iterative neural processing sequence orchestrates feeding[J/OL]. Neuron, 2023, 111(10): 1651-1665.e5 [2025-09-02]. https://pubmed.ncbi.nlm.nih.gov/36924773/. DOI: 10.1016/j.neuron.2023.02.025.
[47]
QU S, LIN Z W. Effects of bariatric surgery on central nervous system regulation of obesity[J]. Chin J Dig Surg, 2019(9): 838-842. DOI: 10.3760/cma.j.issn.1673-9752.2019.09.006.
[48]
LIU Y, XIAO M Y, GUO Y T, et al. The effective neural connections in food inhibitory control and their relationship with daily eating behavior in individuals with overweight/obesity or normal-weight[J/OL]. Neuroimage, 2025, 321: 121498 [2025-09-02]. https://pubmed.ncbi.nlm.nih.gov/41043799/. DOI: 10.1016/j.neuroimage.2025.121498.
[49]
PUJOL J, BLANCO-HINOJO L, MARTÍNEZ-VILAVELLA G, et al. Dysfunctional brain reward system in child obesity[J/OL]. Cereb Cortex, 2021, 31(9): 4376-4385 [2025-09-02]. https://pubmed.ncbi.nlm.nih.gov/33861860/. DOI: 10.1093/cercor/bhab092.
[50]
MORALES I. Brain regulation of hunger and motivation: the case for integrating homeostatic and hedonic concepts and its implications for obesity and addiction[J/OL]. Appetite, 2022, 177: 106146 [2025-09-02]. https://pubmed.ncbi.nlm.nih.gov/35753443/. DOI: 10.1016/j.appet.2022.106146.
[51]
TICHANSKY D S, REBECCA GLATT A, MADAN A K, et al. Decrease in sweet taste in rats after gastric bypass surgery[J]. Surg Endosc, 2011, 25(4): 1176-1181. DOI: 10.1007/s00464-010-1335-0.
[52]
DI VINCENZO A, CRESCENZI M, GRANZOTTO M, et al. Body weight reduction by bariatric surgery reduces the plasma levels of the novel orexigenic gut hormone insulin-like peptide 5 in patients with severe obesity[J/OL]. J Clin Med, 2023, 12(11): 3752 [2025-09-02]. https://pubmed.ncbi.nlm.nih.gov/37297947/. DOI: 10.3390/jcm12113752.
[53]
LE THUC O, GARCÍA-CÁCERES C. Obesity-induced inflammation: connecting the periphery to the brain[J]. Nat Metab, 2024, 6(7): 1237-1252. DOI: 10.1038/s42255-024-01079-8.
[54]
ZHANG Y L, HUANG B, YANG W, et al. Correlations between endocrine hormones and cognitive function in patients with obesity: a cross-sectional study[J]. Obes Surg, 2022, 32(7): 2299-2308. DOI: 10.1007/s11695-022-06076-y.
[55]
ANAND S S, FRIEDRICH M G, LEE D S, et al. Evaluation of adiposity and cognitive function in adults[J/OL]. JAMA Netw Open, 2022, 5(2): e2146324 [2025-09-02]. https://pubmed.ncbi.nlm.nih.gov/35103790/. DOI: 10.1001/jamanetworkopen.2021.46324.
[56]
ANWAR N, TUCKER W J, PUZZIFERRI N, et al. Cognition and brain oxygen metabolism improves after bariatric surgery-induced weight loss: a pilot study[J/OL]. Front Endocrinol (Lausanne), 2022, 13: 954127 [2025-09-02]. https://pubmed.ncbi.nlm.nih.gov/36568067/. DOI: 10.3389/fendo.2022.954127.
[57]
SALEM V, DEMETRIOU L, BEHARY P, et al. Weight loss by low-calorie diet versus gastric bypass surgery in people with diabetes results in divergent brain activation patterns: a functional MRI study[J]. Diabetes Care, 2021, 44(8): 1842-1851. DOI: 10.2337/dc20-2641.

PREV MRI advances in central changes related to diabetic peripheral neuropathy
NEXT Quantitative assessment techniques of cerebral oxygen metabolism based on magnetic resonance imaging and their clinical application progress
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn