Share:
Share this content in WeChat
X
Review
Quantitative assessment techniques of cerebral oxygen metabolism based on magnetic resonance imaging and their clinical application progress
GAO Haoli  GAO Ying  LIU Jihua  LU Xiudi 

DOI:10.12015/issn.1674-8034.2025.11.031.


[Abstract] Cerebral oxygen metabolism, as a core process for maintaining normal brain function, relies on key parameters such as the oxygen extraction fraction (OEF), cerebral metabolic rate of oxygen (CMRO₂), and venous oxygen saturation (SvO₂). These parameters serve as critical indicators for evaluating cerebral oxygen utilization and metabolic status. Precise quantitative analysis of these indicators is of great value for an in-depth understanding of brain tissue activity and functional state. Traditional assessment methods, such as positron emission tomography (PET), are plagued by issues including radiation exposure, operational complexity, and high costs. Functional near-infrared spectroscopy (fNIRS) technology is limited by its shallow penetration depth, making it difficult to evaluate deep brain tissues.In contrast, magnetic resonance imaging (MRI) has garnered significant attention in recent years due to its advantages of being non-invasive, providing whole-brain coverage, and offering high resolution.The development and continuous updates of a series of novel techniques and sequences have facilitated more precise assessments of cerebral oxygen metabolism.This article reviews the latest advancements in MRI-based quantitative assessment techniques for cerebral oxygen metabolism, including quantitative susceptibility mapping (QSM), quantitative blood-oxygen-level dependent (qBOLD) imaging, the combined QQ (qBOLD+QSM) technique, and 3D-TRIP MRI (3-D-TRiple-acquisition-after-Inversion-Preparation magnetic resonance imaging), among others. It also analyzed the applications of these technologies in central nervous system diseases, as well as the current research limitations, and proposed future research directions. This article aims to provide a reference basis for the further optimization and clinical translation of MRI technologies, with the expectation of more precisely elucidating the mechanisms of cerebral oxygen metabolism and offering new insights and directions for research in the field of cerebral oxygen metabolism assessment in central nervous system diseases.
[Keywords] cerebral oxygen metabolism;oxygen extraction fraction;cerebral metabolic rate of oxygen;magnetic resonance imaging;central nervous system diseases

GAO Haoli1, 2   GAO Ying2, 3   LIU Jihua1, 2   LU Xiudi1, 2*  

1 Department of Medical Imaging, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China

2 National Clinical Medicine Research Center of Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China

3 Emergency Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China

Corresponding author: LU X D, E-mail: luxiudi2005@126.com

Conflicts of interest   None.

Received  2025-09-11
Accepted  2025-10-30
DOI: 10.12015/issn.1674-8034.2025.11.031
DOI:10.12015/issn.1674-8034.2025.11.031.

[1]
WEHRLI F W. Recent advances in MR imaging-based quantification of brain oxygen metabolism[J]. Magn Reson Med Sci, 2024, 23(3): 377-403. DOI: 10.2463/mrms.rev.2024-0028.
[2]
HAN Y H, WENG W J, ZHANG Y K, et al. Intraoperative application of intelligent, responsive, self-assembling hydrogel rectifies oxygen and energy metabolism in traumatically injured brain[J/OL]. Biomaterials, 2024, 306: 122495 [2025-09-10]. https://pubmed.ncbi.nlm.nih.gov/38309053/. DOI: 10.1016/j.biomaterials.2024.122495.
[3]
ITO H, IBARAKI M, YAMAKUNI R, et al. A non-invasive, reference region-based method for quantification of cerebral blood flow and oxygen metabolism using oxygen-15 labeled gases and positron emission tomography[J]. Asia Ocean J Nucl Med Biol, 2025, 13(2): 126-137. DOI: 10.22038/aojnmb.2025.81433.1578.
[4]
YANG A C, ZHUANG H W, DU L, et al. Evaluation of whole-brain oxygen metabolism in Alzheimer's disease using QSM and quantitative BOLD[J/OL]. Neuroimage, 2023, 282: 120381 [2025-09-10]. https://pubmed.ncbi.nlm.nih.gov/37734476/. DOI: 10.1016/j.neuroimage.2023.120381.
[5]
LIU M H, WAN C X, WANG C Y, et al. Predicting upper limb motor dysfunction after ischemic stroke: a functional near-infrared spectroscopy-based nomogram model[J/OL]. Front Neurol, 2025, 16: 1524851 [2025-09-10]. https://pubmed.ncbi.nlm.nih.gov/40496130/. DOI: 10.3389/fneur.2025.1524851.
[6]
BIONDETTI E, CHO J, LEE H. Cerebral oxygen metabolism from MRI susceptibility[J/OL]. Neuroimage, 2023, 276: 120189 [2025-09-10]. https://pubmed.ncbi.nlm.nih.gov/37230206/. DOI: 10.1016/j.neuroimage.2023.120189.
[7]
CHO J, ZHANG J W, SPINCEMAILLE P, et al. Multi-Echo Complex Quantitative Susceptibility Mapping and Quantitative Blood Oxygen Level-Dependent Magnitude (mcQSM + qBOLD or mcQQ) for Oxygen Extraction Fraction (OEF) Mapping[J/OL]. Bioengineering (Basel), 2024, 11(2): 131 [2025-09-10]. https://pubmed.ncbi.nlm.nih.gov/38391617/. DOI: 10.3390/bioengineering11020131.
[8]
MCFADDEN J, MATTHEWS J, SCOTT L, et al. Compensatory increase in oxygen extraction fraction is associated with age-related cerebrovascular disease[J/OL]. NeuroImage Clin, 2025, 45: 103746 [2025-09-10]. https://pubmed.ncbi.nlm.nih.gov/39922028/. DOI: 10.1016/j.nicl.2025.103746.
[9]
TICHAUER K M, HADWAY J A, LEE T Y, et al. Measurement of cerebral oxidative metabolism with near-infrared spectroscopy: a validation study[J]. J Cereb Blood Flow Metab, 2006, 26(5): 722-730. DOI: 10.1038/sj.jcbfm.9600230.
[10]
LI Z, ZHANG J P, ZHANG X X, et al. Oxygen metabolism abnormalities and high-altitude cerebral edema[J/OL]. Front Immunol, 2025, 16: 1555910 [2025-09-10]. https://pubmed.ncbi.nlm.nih.gov/40176814/. DOI: 10.3389/fimmu.2025.1555910.
[11]
LEE H, XU J, FERNANDEZ-SEARA M A, et al. Validation of a new 3D quantitative BOLD based cerebral oxygen extraction mapping[J]. J Cereb Blood Flow Metab, 2024, 44(7): 1184-1198. DOI: 10.1177/0271678X231220332.
[12]
MESQUIDA J. Assessing fluid responsiveness with central venous oxygen saturation: the complex relationship between oxygenation and perfusion[J/OL]. Crit Care, 2025, 29(1): 85 [2025-09-10]. https://pubmed.ncbi.nlm.nih.gov/39987190/. DOI: 10.1186/s13054-025-05294-x.
[13]
VACCARINO F, QUATTROCCHI C C, PARILLO M. Susceptibility-weighted imaging (SWI): technical aspects and applications in brain MRI for neurodegenerative disorders[J/OL]. Bioengineering (Basel), 2025, 12(5): 473 [2025-09-10]. https://pubmed.ncbi.nlm.nih.gov/40428092/. DOI: 10.3390/bioengineering12050473.
[14]
WANG S H, LI H W, WENG J C, et al. QSM predicts haemorrhage risk in brainstem cavernous malformations: a multicentre prospective study[J/OL]. J Neurol Neurosurg Psychiatry, 2025: jnnp-2025-336149 [2025-09-10]. https://pubmed.ncbi.nlm.nih.gov/40533154/. DOI: 10.1136/jnnp-2025-336149.
[15]
GHARABAGHI S, LIU S F, WANG Y, et al. Multi-echo quantitative susceptibility mapping for strategically acquired gradient echo (STAGE) imaging[J/OL]. Front Neurosci, 2020, 14: 581474 [2025-09-10]. https://pubmed.ncbi.nlm.nih.gov/33192267/. DOI: 10.3389/fnins.2020.581474.
[16]
HAACKE E M, XU Q Y, KOKENY P, et al. Strategically acquired gradient echo (STAGE) imaging, part IV: constrained reconstruction of white noise (CROWN) processing as a means to improve signal-to-noise in STAGE imaging at 3 tesla[J/OL]. Magn Reson Imaging, 2024, 107: 55-68 [2025-09-10]. https://pubmed.ncbi.nlm.nih.gov/38181834/. DOI: 10.1016/j.mri.2024.01.001.
[17]
HE X, YABLONSKIY D A. Quantitative BOLD: mapping of human cerebral deoxygenated blood volume and oxygen extraction fraction: default state[J]. Magn Reson Med, 2007, 57(1): 115-126. DOI: 10.1002/mrm.21108.
[18]
ELANGHOVAN P, NGUYEN T, SPINCEMAILLE P, et al. Sensitivity assessment of QSM+qBOLD (or QQ) in detecting elevated oxygen extraction fraction (OEF) in physiological change[J]. J Cereb Blood Flow Metab, 2025, 45(4): 735-745. DOI: 10.1177/0271678X241298584.
[19]
CHO J, KEE Y, SPINCEMAILLE P, et al. Cerebral metabolic rate of oxygen (CMRO2) mapping by combining quantitative susceptibility mapping (QSM) and quantitative blood oxygenation level-dependent imaging (qBOLD)[J]. Magn Reson Med, 2018, 80(4): 1595-1604. DOI: 10.1002/mrm.27135.
[20]
CHO J, SPINCEMAILLE P, NGUYEN T D, et al. Temporal clustering, tissue composition, and total variation for mapping oxygen extraction fraction using QSM and quantitative BOLD[J]. Magn Reson Med, 2021, 86(5): 2635-2646. DOI: 10.1002/mrm.28875.
[21]
CHENG Y, QIN Q, van Zijl P C M, et al. A three-dimensional single-scan approach for the measurement of changes in cerebral blood volume, blood flow, and blood oxygenation-weighted signals during functional stimulation[J/OL]. Neuroimage, 2017, 147: 976-984 [2025-09-10]. https://pubmed.ncbi.nlm.nih.gov/28041979/. DOI: 10.1016/j.neuroimage.2016.12.082.
[22]
JAIN V, LANGHAM M C, WEHRLI F W. MRI estimation of global brain oxygen consumption rate[J]. J Cereb Blood Flow Metab, 2010, 30(9): 1598-1607. DOI: 10.1038/jcbfm.2010.49.
[23]
DENNISON J B, LANGHAM M C, WIEMKEN A S, et al. Concurrent evaluation of cerebral oxygen metabolism and upper airway architecture via temporally resolved MRI[J]. J Cereb Blood Flow Metab, 2025, 45(10): 2047-2059. DOI: 10.1177/0271678X251345293.
[24]
YIN Y Y, ZHANG Y Y, GAO J H. Dynamic measurement of oxygen extraction fraction using a multiecho asymmetric spin echo (MASE) pulse sequence[J]. Magn Reson Med, 2018, 80(3): 1118-1124. DOI: 10.1002/mrm.27078.
[25]
YIN Y Y, LI Q G, SHAN Y, et al. Method for functional magnetic resonance imaging of cerebral metabolic rate of oxygen[J]. China Med Devices, 2024, 39(5): 137-141, 168. DOI: 10.3969/j.issn.1674-1633.2024.05.023.
[26]
ZHU M J, CHEN W J, ZHANG J. Aerobic exercise, an effective intervention for cognitive impairment after ischemic stroke[J/OL]. Front Aging Neurosci, 2025, 17: 1514271 [2025-09-10]. https://pubmed.ncbi.nlm.nih.gov/40256392/. DOI: 10.3389/fnagi.2025.1514271.
[27]
BAI L Y, LI N, LI H Q, et al. Macrophage-mimetic liposomes co-delivering ceria and Ac2-26 peptide for penumbra protection in ischemic stroke[J/OL]. J Nanobiotechnology, 2025, 23(1): 488 [2025-09-10]. https://pubmed.ncbi.nlm.nih.gov/40618146/. DOI: 10.1186/s12951-025-03575-9.
[28]
NÄGELE F L, SCHELDEMAN L, WOUTERS A, et al. Blood-brain barrier leakage in the penumbra is associated with infarction on follow-up imaging in acute ischemic stroke[J]. Stroke, 2025, 56(7): 1832-1842. DOI: 10.1161/STROKEAHA.124.050171.
[29]
CRITON G, HERMIER M, DE BOURGUIGNON C, et al. The brush sign is associated with a more severe oxygen metabolic impairment of the ischemic penumbra: an MRI-based study in patients with acute stroke[J]. AJNR Am J Neuroradiol, 2025, 46(8): 1557-1564. DOI: 10.3174/ajnr.A8723.
[30]
ASGHARIAHMADABAD M, ISMAIL A, METANAT P, et al. Oxygen extraction fraction on baseline MRI predicts infarction growth in successfully reperfused patients[J]. Stroke, 2025, 56(10): 3024-3033. DOI: 10.1161/STROKEAHA.125.051270.
[31]
LU X D, LUO Y, FAWAZ M, et al. Dynamic changes of asymmetric cortical veins relate to neurologic prognosis in acute ischemic stroke[J]. Radiology, 2021, 301(3): 672-681. DOI: 10.1148/radiol.2021210201.
[32]
CAO F Q, WANG M M, FAN S Y, et al. Cerebral venous oxygen saturation in hypoperfusion regions may become a new imaging indicator to predict the clinical outcome of stroke[J/OL]. Life (Basel), 2022, 12(9): 1312 [2025-09-10]. https://pubmed.ncbi.nlm.nih.gov/36143349/. DOI: 10.3390/life12091312.
[33]
CAO F Q, WANG M M, HAN S H, et al. Quantitative distribution of cerebral venous oxygen saturation and its prognostic value in patients with acute ischemic stroke[J/OL]. Brain Sci, 2022, 12(8): 1109 [2025-09-10]. https://pubmed.ncbi.nlm.nih.gov/36009171/. DOI: 10.3390/brainsci12081109.
[34]
COLEMAN C I, CONCHA M, KOCH B, et al. Derivation and validation of a composite scoring system (SAVED2) for prediction of unfavorable modified Rankin scale score following intracerebral hemorrhage[J/OL]. Front Neurol, 2023, 14: 1112723 [2025-09-10]. https://pubmed.ncbi.nlm.nih.gov/36908622/. DOI: 10.3389/fneur.2023.1112723.
[35]
ZHANG S, CHO J, NGUYEN T D, et al. Initial experience of challenge-free MRI-based oxygen extraction fraction mapping of ischemic stroke at various stages: comparison with perfusion and diffusion mapping[J/OL]. Front Neurosci, 2020, 14: 535441 [2025-09-10]. https://pubmed.ncbi.nlm.nih.gov/33041755/. DOI: 10.3389/fnins.2020.535441.
[36]
KRISHNAMURTHY H K, JAYARAMAN V, KRISHNA K, et al. An overview of the genes and biomarkers in Alzheimer's disease[J/OL]. Ageing Res Rev, 2025, 104: 102599 [2025-09-10]. https://pubmed.ncbi.nlm.nih.gov/39612989/. DOI: 10.1016/j.arr.2024.102599.
[37]
LIU G D, YANG C, WANG X, et al. Oxygen metabolism abnormality and Alzheimer's disease: an update[J/OL]. Redox Biol, 2023, 68: 102955 [2025-09-10]. https://pubmed.ncbi.nlm.nih.gov/37956598/. DOI: 10.1016/j.redox.2023.102955.
[38]
T A R, K K, PAUL J S. Unveiling metabolic patterns in dementia: insights from high-resolution quantitative blood-oxygenation-level-dependent MRI[J]. Med Phys, 2024, 51(9): 6002-6019. DOI: 10.1002/mp.17173.
[39]
CHEN D K, YANG H, LI H, et al. MRI-based diagnostic model for Alzheimer's disease using 3D-ResNet[J/OL]. Biomed Phys Eng Express, 2025, 11(3): 035031 [2025-09-10]. https://pubmed.ncbi.nlm.nih.gov/40354785/. DOI: 10.1088/2057-1976/add73d.
[40]
HANNAWI Y. Cerebral small vessel disease: a review of the pathophysiological mechanisms[J]. Transl Stroke Res, 2024, 15(6): 1050-1069. DOI: 10.1007/s12975-023-01195-9.
[41]
MARKUS H S, JOUTEL A. The pathogenesis of cerebral small vessel disease and vascular cognitive impairment[J]. Physiol Rev, 2025, 105(3): 1075-1171. DOI: 10.1152/physrev.00028.2024.
[42]
REILÄNDER A, PILATUS U, SCHÜRE J R, et al. Impaired oxygen extraction and adaptation of intracellular energy metabolism in cerebral small vessel disease[J/OL]. Cereb Circ Cogn Behav, 2023, 4: 100162 [2025-09-10]. https://pubmed.ncbi.nlm.nih.gov/36851996/. DOI: 10.1016/j.cccb.2023.100162.
[43]
LIN Z X, LIM C, JIANG D R, et al. Longitudinal changes in brain oxygen extraction fraction (OEF) in older adults: Relationship to markers of vascular and Alzheimer's pathology[J]. Alzheimers Dement, 2023, 19(2): 569-577. DOI: 10.1002/alz.12727.
[44]
ZHANG R T, LIN M, CHO J, et al. Oxygen extraction fraction in small vessel disease: relationship to disease burden and progression[J]. Brain, 2025, 148(6): 1950-1962. DOI: 10.1093/brain/awae383.
[45]
ANDERSON N, TRAN P. Obstructive sleep apnea[J]. Prim Care Clin Off Pract, 2025, 52(1): 47-59. DOI: 10.1016/j.pop.2024.09.007.
[46]
WANG N, ZHANG L, ZHANG J H, et al. The value of amide proton transfer imaging in assessing brain damage in patients with obstructive sleep apnea[J]. Sleep Med, 2024, 124: 434-442. DOI: 10.1016/j.sleep.2024.10.009.
[47]
TASALI E, PAMIDI S, COVASSIN N, et al. Obstructive sleep apnea and cardiometabolic disease: obesity, hypertension, and diabetes[J]. Circ Res, 2025, 137(5): 764-787. DOI: 10.1161/CIRCRESAHA.125.325676.
[48]
BAI M X, XIONG Z L, ZHANG Y, et al. Associations between quantitative susceptibility mapping with male obstructive sleep apnea clinical and imaging markers[J/OL]. Sleep Med, 2024, 124: 154-161[2025-09-10]. https://pubmed.ncbi.nlm.nih.gov/39303362/. DOI: 10.1016/j.sleep.2024.09.019.
[49]
MOHAMMADI M, SAMADI S, BATOULI S A H, et al. Reduced oxygen extraction fraction as a biomarker for cognitive deficits in obstructive sleep apnea[J/OL]. Brain Behav, 2025, 15(2): e70273 [2025-09-10]. https://pubmed.ncbi.nlm.nih.gov/39915228/. DOI: 10.1002/brb3.70273.
[50]
ZHAO J Y, GUO X. Mitochondrial dysfunction and Huntington's disease[J]. J Sun Yat Sen Univ Med Sci, 2024, 45(6): 941-952. DOI: 10.13471/j.cnki.j.sun.yat-sen.univ(med.sci).20241021.008.
[51]
HANDSAKER R E, KASHIN S, REED N M, et al. Long somatic DNA-repeat expansion drives neurodegeneration in Huntington's disease[J/OL]. Cell, 2025, 188(3): 623-639.e19[2025-09-10]. https://pubmed.ncbi.nlm.nih.gov/39824182/. DOI: 10.1016/j.cell.2024.11.038.
[52]
RODRÍGUEZ-SANTANA I, MESTRE T, SQUITIERI F, et al. Economic burden of Huntington disease in Europe and the USA: results from the Huntington's disease burden of illness study[J]. Eur J Neurol, 2023, 30(4): 1109-1117. DOI: 10.1111/ene.15645.
[53]
LEE S J, WEISBURD B, LEE J, et al. Significant underascertainment in Huntington's disease[J/OL]. Brain Commun, 2025, 7(3): fcaf194 [2025-09-10]. https://pubmed.ncbi.nlm.nih.gov/40454200/. DOI: 10.1093/braincomms/fcaf194.
[54]
KLINKMUELLER P, KRONENBUERGER M, MIAO X Y, et al. Impaired response of cerebral oxygen metabolism to visual stimulation in Huntington's disease[J]. J Cereb Blood Flow Metab, 2021, 41(5): 1119-1130. DOI: 10.1177/0271678X20949286.
[55]
HOBBS N Z, PAPOUTSI M, DELVA A, et al. Neuroimaging to facilitate clinical trials in Huntington's disease: current opinion from the EHDN imaging working group[J]. J Huntingtons Dis, 2024, 13(2): 163-199. DOI: 10.3233/JHD-240016.

PREV Research progress of MRI in brain structure and function changes of obese patients after weight loss and metabolism surgery
NEXT Advancements in the integration of artificial intelligence and imaging technology for the detection of metastatic cervical lymph nodes
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn