Share:
Share this content in WeChat
X
Review
Advancements in the integration of artificial intelligence and imaging technology for the detection of metastatic cervical lymph nodes
CHEN Lijun  WANG Bing  WANG Lin 

DOI:10.12015/issn.1674-8034.2025.11.032.


[Abstract] Metastatic cervical lymph nodes (MCLN) are crucial in the diagnosis, staging, and clinical decision-making processes for various head and neck tumors. Despite the widespread use of conventional imaging modalities such as computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography-computed tomography (PET-CT) in clinical practice, their sensitivity and specificity in accurately identifying all instances of MCLN remain suboptimal. In recent years, artificial intelligence (AI), and deep learning (DL) in particular, have made significant advancements in the field of medical image analysis. This review provides a comprehensive review of the latest research on the combined use of different modal imaging techniques and AI (CT enhancement combined with automatic segmentation, MRI high soft tissue contrast combined with automatic segmentation, PET-CT metabolic image fusion AI model, ultrasound combined with DL for real-time automatic auxiliary diagnosis, etc.) in head and neck MCLN. It elaborates on the application of AI in the diagnosis, therapeutic effect and prognosis assessment of MCLN, summarizes the existing shortcomings and technical challenges in current research, and proposes future development directions. This review aims to provide a reference for future research collaboration, model optimization and clinical application.
[Keywords] head and neck neoplasms;lymph node metastasis;artificial intelligence;deep learning;imaging technology;magnetic resonance imaging

CHEN Lijun1, 2   WANG Bing3   WANG Lin4*  

1 The First Clinical Medical College of Gansu University of Chinese Medicine, Lanzhou 730000, China

2 Department of Radiology, Gansu Provincial People's Hospital, Lanzhou 730050, China

3 Department of Orthopaedics, the First People's Hospital of Baiyin City, Baiyin 730900, China

4 Department of Radiology, Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Lanzhou 730000, China

Corresponding author: WANG L, E-mail: tedyong@163.com

Conflicts of interest   None.

Received  2025-06-08
Accepted  2025-09-30
DOI: 10.12015/issn.1674-8034.2025.11.032
DOI:10.12015/issn.1674-8034.2025.11.032.

[1]
GAO W J, HU Y H, ZHU D, et al. Extranodal extension in bilateral cervical metastases: a predictor of undesirable survival outcomes despite aggressive salvage treatment in oral cancer patients[J]. J Cancer, 2021, 12(19): 5848-5863. DOI: 10.7150/jca.60152.
[2]
MAHMOOD H, SHABAN M, RAJPOOT N, et al. Artificial Intelligence-based methods in head and neck cancer diagnosis: an overview[J]. Br J Cancer, 2021, 124(12): 1934-1940. DOI: 10.1038/s41416-021-01386-x.
[3]
LIAO L J, LO W C, HSU W L, et al. Detection of cervical lymph node metastasis in head and neck cancer patients with clinically N0 neck-a meta-analysis comparing different imaging modalities[J/OL]. BMC Cancer, 2012, 12: 236 [2025-06-07]. https://pubmed.ncbi.nlm.nih.gov/22691269/. DOI: 10.1186/1471-2407-12-236.
[4]
ALABI R O, ELMUSRATI M, LEIVO I, et al. Artificial intelligence-driven radiomics in head and neck cancer: current status and future prospects[J/OL]. Int J Med Inform, 2024, 188: 105464 [2025-06-07]. https://pubmed.ncbi.nlm.nih.gov/38728812/. DOI: 10.1016/j.ijmedinf.2024.105464.
[5]
PENG Z Y, WANG Y M, WANG Y X, et al. Application of radiomics and machine learning in head and neck cancers[J]. Int J Biol Sci, 2021, 17(2): 475-486. DOI: 10.7150/ijbs.55716.
[6]
SHAMSHAD F, KHAN S, ZAMIR S W, et al. Transformers in medical imaging: a survey[J/OL]. Med Image Anal, 2023, 88: 102802 [2025-06-07]. https://pubmed.ncbi.nlm.nih.gov/37315483/. DOI: 10.1016/j.media.2023.102802.
[7]
KOH D M, PAPANIKOLAOU N, BICK U, et al. Artificial intelligence and machine learning in cancer imaging[J/OL]. Commun Med (Lond), 2022, 2: 133 [2025-06-07]. https://pubmed.ncbi.nlm.nih.gov/36310650/. DOI: 10.1038/s43856-022-00199-0.
[8]
BARRAGÁN-MONTERO A, JAVAID U, VALDÉS G, et al. Artificial intelligence and machine learning for medical imaging: a technology review[J/OL]. Phys Med, 2021, 83: 242-256 [2025-06-07]. https://pubmed.ncbi.nlm.nih.gov/33979715/. DOI: 10.1016/j.ejmp.2021.04.016.
[9]
LEI Y M, YIN M, YU M H, et al. Artificial intelligence in medical imaging of the breast[J/OL]. Front Oncol, 2021, 11: 600557 [2025-06-07]. https://pubmed.ncbi.nlm.nih.gov/34367938/. DOI: 10.3389/fonc.2021.600557.
[10]
GIANNITTO C, MERCANTE G, AMMIRABILE A, et al. Radiomics-based machine learning for the diagnosis of lymph node metastases in patients with head and neck cancer: Systematic review[J]. Head Neck, 2023, 45(2): 482-491. DOI: 10.1002/hed.27239.
[11]
VALIZADEH P, JANNATDOUST P, PAHLEVAN-FALLAHY M T, et al. Diagnostic accuracy of radiomics and artificial intelligence models in diagnosing lymph node metastasis in head and neck cancers: a systematic review and meta-analysis[J]. Neuroradiology, 2025, 67(2): 449-467. DOI: 10.1007/s00234-024-03485-x.
[12]
ZHOU S K, GREENSPAN H, DAVATZIKOS C, et al. A review of deep learning in medical imaging: Imaging traits, technology trends, case studies with progress highlights, and future promises[J]. Proc IEEE Inst Electr Electron Eng, 2021, 109(5): 820-838. DOI: 10.1109/JPROC.2021.3054390.
[13]
RINNEBURGER M, CAROLUS H, IUGA A I, et al. Automated localization and segmentation of cervical lymph nodes on contrast-enhanced CT using a 3D foveal fully convolutional neural network[J/OL]. Eur Radiol Exp, 2023, 7(1): 45 [2025-06-07]. https://pubmed.ncbi.nlm.nih.gov/37505296/. DOI: 10.1186/s41747-023-00360-x.
[14]
REINDERS F C J, SAVENIJE M H F, DE RIDDER M, et al. Automatic segmentation for magnetic resonance imaging guided individual elective lymph node irradiation in head and neck cancer patients[J/OL]. Phys Imaging Radiat Oncol, 2024, 32: 100655 [2025-06-07]. https://pubmed.ncbi.nlm.nih.gov/39502445/. DOI: 10.1016/j.phro.2024.100655.
[15]
NIKULIN P, ZSCHAECK S, MAUS J, et al. A convolutional neural network with self-attention for fully automated metabolic tumor volume delineation of head and neck cancer in [18 F] FDG PET/CT[J]. Eur J Nucl Med Mol Imaging, 2023, 50(9): 2751-2766. DOI: 10.1007/s00259-023-06197-1.
[16]
GAO Y X, JIANG Y, PENG Y H, et al. Medical image segmentation: a comprehensive review of deep learning-based methods[J/OL]. Tomography, 2025, 11(5): 52 [2025-06-07]. https://pubmed.ncbi.nlm.nih.gov/40423254/. DOI: 10.3390/tomography11050052.
[17]
FIEBELKORN I C, KASTNER S. Functional specialization in the attention network[J/OL]. Annu Rev Psychol, 2020, 71: 221-249 [2025-06-07]. https://pubmed.ncbi.nlm.nih.gov/31514578/. DOI: 10.1146/annurev-psych-010418-103429.
[18]
ALOM M Z, YAKOPCIC C, HASAN M, et al. Recurrent residual U-Net for medical image segmentation[J/OL]. J Med Imaging (Bellingham), 2019, 6(1): 014006 [2025-06-07]. https://pubmed.ncbi.nlm.nih.gov/30944843/. DOI: 10.1117/1.JMI.6.1.014006.
[19]
JIANG Y, CHEN L, ZHANG H, et al. Breast cancer histopathological image classification using convolutional neural networks with small SE-ResNet module[J/OL]. PLoS One, 2019, 14(3): e0214587 [2025-06-07]. https://pubmed.ncbi.nlm.nih.gov/30925170/. DOI: 10.1371/journal.pone.0214587.
[20]
ORTEGA C, ESHET Y, PRICA A, et al. Combination of FDG PET/CT radiomics and clinical parameters for outcome prediction in patients with Hodgkin's lymphoma[J/OL]. Cancers, 2023, 15(7): 2056 [2025-06-07]. https://pubmed.ncbi.nlm.nih.gov/37046717/. DOI: 10.3390/cancers15072056.
[21]
DUAN C L, AN L, YANG Y F, et al. The role of artificial intelligence and radiomics in the management of lymphomas by PET/CT: the clairvoyance in clinic[J/OL]. Cancer Manag Res, 2025, 17: 1457-1475 [2025-06-07]. https://pubmed.ncbi.nlm.nih.gov/40704298/. DOI: 10.2147/CMAR.S529589.
[22]
SHIRI I, RAZEGHI B, VAFAEI SADR A, et al. Multi-institutional PET/CT image segmentation using federated deep transformer learning[J/OL]. Comput Methods Programs Biomed, 2023, 240: 107706 [2025-06-07]. https://pubmed.ncbi.nlm.nih.gov/37506602/. DOI: 10.1016/j.cmpb.2023.107706.
[23]
ZHU X S, PENG J. Application of spectral CT in diagnosis of head and neck diseases[J]. Chin Med Equip J, 2019, 40(4): 98-102. DOI: 10.19745/j.1003-8868.2019103.
[24]
WEI P Y, JIANG N D, HAN Z J, et al. Diagnostic value of CT enhancement degree in cervical lymph node metastasis of papillary thyroid carcinoma[J]. Chin J Endocr Surg, 2020, 14(2): 5. DOI: 10.3760/cma.j.issn.115807-20190414-00081.
[25]
CHEN M T, JIANG Y D, ZHOU X H, et al. Dual-energy computed tomography in detecting and predicting lymph node metastasis in malignant tumor patients: a comprehensive review[J/OL]. Diagnostics (Basel), 2024, 14(4): 377 [2025-06-07]. https://pubmed.ncbi.nlm.nih.gov/38396416/. DOI: 10.3390/diagnostics14040377.
[26]
LIU Y, ZHANG X, WANG J, et al. Dual-energy CT quantitative parameters for predicting lymph node metastasis in papillary thyroid carcinoma [J/OL]. Eur J Radiol, 2020, 130: 109153 [2025-06-07]. https://pubmed.ncbi.nlm.nih.gov/32717577/. DOI: 10.1016/j.ejrad.2020.109153.
[27]
FORGHANI R, CHATTERJEE A, REINHOLD C, et al. Head and neck squamous cell carcinoma: prediction of cervical lymph node metastasis by dual-energy CT texture analysis with machine learning[J]. Eur Radiol, 2019, 29(11): 6172-6181. DOI: 10.1007/s00330-019-06159-y.
[28]
QIU Y X, FEI Y, LIU J Y, et al. Prevalence, risk factors and location of skip metastasis in papillary thyroid carcinoma: a systematic review and meta-analysis[J/OL]. Cancer Manag Res, 2019, 11: 8721-8730 [2025-06-07]. https://pubmed.ncbi.nlm.nih.gov/31576174/. DOI: 10.2147/CMAR.S200628.
[29]
ROTSTEIN L. The role of lymphadenectomy in the management of papillary carcinoma of the thyroid[J]. J Surg Oncol, 2009, 99(4): 186-188. DOI: 10.1002/jso.21234.
[30]
KITAHARA C M, SOSA J A. The changing incidence of thyroid cancer[J]. Nat Rev Endocrinol, 2016, 12(11): 646-653. DOI: 10.1038/nrendo.2016.110.
[31]
ROBENSHTOK E, FISH S, BACH A, et al. Suspicious cervical lymph nodes detected after thyroidectomy for papillary thyroid cancer usually remain stable over years in properly selected patients[J]. J Clin Endocrinol Metab, 2012, 97(8): 2706-2713. DOI: 10.1210/jc.2012-1553.
[32]
ONOUE K, FUJIMA N, ANDREU-ARASA V C, et al. Cystic cervical lymph nodes of papillary thyroid carcinoma, tuberculosis and human papillomavirus positive oropharyngeal squamous cell carcinoma: utility of deep learning in their differentiation on CT[J/OL]. Am J Otolaryngol, 2021, 42(5): 103026 [2025-06-07]. https://pubmed.ncbi.nlm.nih.gov/33862564/. DOI: 10.1016/j.amjoto.2021.103026.
[33]
WANG C, YU P Y, ZHANG H C, et al. Artificial intelligence-based prediction of cervical lymph node metastasis in papillary thyroid cancer with CT[J]. Eur Radiol, 2023, 33(10): 6828-6840. DOI: 10.1007/s00330-023-09700-2.
[34]
JIN D, NI X Q, ZHANG X D, et al. Multiphase dual-energy spectral CT-based deep learning method for the noninvasive prediction of head and neck lymph nodes metastasis in patients with papillary thyroid cancer[J/OL]. Front Oncol, 2022, 12: 869895 [2025-06-07]. https://pubmed.ncbi.nlm.nih.gov/35515110/. DOI: 10.3389/fonc.2022.869895.
[35]
MOORE B A, WEBER R S, PRIETO V, et al. Lymph node metastases from cutaneous squamous cell carcinoma of the head and neck[J]. Laryngoscope, 2005, 115(9): 1561-1567. DOI: 10.1097/01.mlg.0000173202.56739.9f.
[36]
FERRIS R L, XI L Q, RAJA S, et al. Molecular staging of cervical lymph nodes in squamous cell carcinoma of the head and neck[J]. Cancer Res, 2005, 65(6): 2147-2156. DOI: 10.1158/0008-5472.can-04-3717.
[37]
BARDOSI Z R, DEJACO D, SANTER M, et al. Benchmarking eliminative radiomic feature selection for head and neck lymph node classification[J/OL]. Cancers (Basel), 2022, 14(3): 477 [2025-06-07]. https://pubmed.ncbi.nlm.nih.gov/35158745/. DOI: 10.3390/cancers14030477.
[38]
CHOI Y J, LEE I S, SONG Y S, et al. Diagnostic performance of diffusion-weighted (DWI) and dynamic contrast-enhanced (DCE) MRI for the differentiation of benign from malignant soft-tissue tumors[J]. J Magn Reson Imaging, 2019, 50(3): 798-809. DOI: 10.1002/jmri.26607.
[39]
ZHOU Z W, XUE J W, WU Y, et al. Automated detection of metastatic lymph nodes in head and neck malignant tumors on high - resolution MRI images using an improved convolutional neural network[J/OL]. Int J Med Inform, 2025, 200: 105904 [2025-06-07]. https://pubmed.ncbi.nlm.nih.gov/40220628/. DOI: 10.1016/j.ijmedinf.2025.105904.
[40]
ALBANO D, BRUNO F, AGOSTINI A, et al. Dynamic contrast-enhanced (DCE) imaging: state of the art and applications in whole-body imaging[J]. Jpn J Radiol, 2022, 40(4): 341-366. DOI: 10.1007/s11604-021-01223-4.
[41]
YUAN Y, REN J L, TAO X F. Machine learning-based MRI texture analysis to predict occult lymph node metastasis in early-stage oral tongue squamous cell carcinoma[J]. Eur Radiol, 2021, 31(9): 6429-6437. DOI: 10.1007/s00330-021-07731-1.
[42]
WANG Y P, YU T H, YANG Z H, et al. Radiomics based on magnetic resonance imaging for preoperative prediction of lymph node metastasis in head and neck cancer: Machine learning study[J]. Head Neck, 2022, 44(12): 2786-2795. DOI: 10.1002/hed.27189.
[43]
WANG F, TAN R K, FENG K, et al. Magnetic resonance imaging-based radiomics features associated with depth of invasion predicted lymph node metastasis and prognosis in tongue cancer[J]. J Magn Reson Imaging, 2022, 56(1): 196-209. DOI: 10.1002/jmri.28019.
[44]
WANG D W, HE X, HUANG C M, et al. Magnetic resonance imaging-based radiomics and deep learning models for predicting lymph node metastasis of squamous cell carcinoma of the tongue[J]. Oral Surg Oral Med Oral Pathol Oral Radiol, 2024, 138(1): 214-224. DOI: 10.1016/j.oooo.2024.01.016.
[45]
LIU S, ZHANG A H, XIONG J J, et al. The application of radiomics machine learning models based on multimodal MRI with different sequence combinations in predicting cervical lymph node metastasis in oral tongue squamous cell carcinoma patients[J]. Head Neck, 2024, 46(3): 513-527. DOI: 10.1002/hed.27605.
[46]
LAN T J, KUANG S J, LIANG P S, et al. MRI-based deep learning and radiomics for prediction of occult cervical lymph node metastasis and prognosis in early-stage oral and oropharyngeal squamous cell carcinoma: a diagnostic study[J]. Int J Surg, 2024, 110(8): 4648-4659. DOI: 10.1097/JS9.0000000000001578.
[47]
XIE K, JIANG H, CHEN X W, et al. Multiparameter MRI-based model integrating radiomics and deep learning for preoperative staging of laryngeal squamous cell carcinoma[J/OL]. Sci Rep, 2025, 15(1): 16239 [2025-06-07]. https://pubmed.ncbi.nlm.nih.gov/40346120/. DOI: 10.1038/s41598-025-01270-1.
[48]
YIMIT Y, YASIN P, TUERSUN A, et al. Multiparametric MRI-based interpretable radiomics machine learning model differentiates medulloblastoma and ependymoma in children: a two-center study[J]. Acad Radiol, 2024, 31(8): 3384-3396. DOI: 10.1016/j.acra.2024.02.040.
[49]
ZHANG D Y, SHEN M Y, ZHANG L, et al. Establishment of an interpretable MRI radiomics-based machine learning model capable of predicting axillary lymph node metastasis in invasive breast cancer[J/OL]. Sci Rep, 2025, 15(1): 26030 [2025-06-07]. https://pubmed.ncbi.nlm.nih.gov/40676103/. DOI: 10.1038/s41598-025-10818-0.
[50]
CHENG Z Q, MA J J, YIN L, et al. Non-invasive molecular imaging for precision diagnosis of metastatic lymph nodes: opportunities from preclinical to clinical applications[J]. Eur J Nucl Med Mol Imaging, 2023, 50(4): 1111-1133. DOI: 10.1007/s00259-022-06056-5.
[51]
MUGASA H, DUA S, KOH J E W, et al. An adaptive feature extraction model for classification of thyroid lesions in ultrasound images[J/OL]. Pattern Recognit Lett, 2020, 131: 463-473 [2025-06-07]. https://www.sciencedirect.com/science/article/abs/pii/S0167865520300490?via%3Dihub. DOI: 10.1016/j.patrec.2020.02.009.
[52]
ZHOU L Q, ZENG S E, XU J W, et al. Deep learning predicts cervical lymph node metastasis in clinically node-negative papillary thyroid carcinoma[J/OL]. Insights Imaging, 2023, 14(1): 222 [2025-06-07]. https://pubmed.ncbi.nlm.nih.gov/38117404/. DOI: 10.1186/s13244-023-01550-2.
[53]
CHANG L C, ZHANG Y Q, ZHU J L, et al. An integrated nomogram combining deep learning, clinical characteristics and ultrasound features for predicting central lymph node metastasis in papillary thyroid cancer: a multicenter study[J/OL]. Front Endocrinol (Lausanne), 2023, 14: 964074 [2025-06-07]. https://pubmed.ncbi.nlm.nih.gov/36896175/. DOI: 10.3389/fendo.2023.964074.
[54]
WANG Z Z, QU L M, CHEN Q T, et al. Deep learning-based multifeature integration robustly predicts central lymph node metastasis in papillary thyroid cancer[J/OL]. BMC Cancer, 2023, 23(1): 128 [2025-06-07]. https://pubmed.ncbi.nlm.nih.gov/36750791/. DOI: 10.1186/s12885-023-10598-8.
[55]
FAN F J, LI F, WANG Y X, et al. Deep learning based on ultrasound images predicting cervical lymph node metastasis in postoperative patients with differentiated thyroid carcinoma[J]. Br J Radiol, 2025, 98(1170): 920-928. DOI: 10.1093/bjr/tqaf047.
[56]
SHEN P C, YANG Z Y, SUN J J, et al. Explainable multimodal deep learning for predicting thyroid cancer lateral lymph node metastasis using ultrasound imaging[J/OL]. Nat Commun, 2025, 16(1): 7052 [2025-06-07]. https://pubmed.ncbi.nlm.nih.gov/40750786/. DOI: 10.1038/s41467-025-62042-z.
[57]
BHATTACHARYA K, MAHAJAN A, VAISH R, et al. Imaging of neck nodes in head and neck cancers - a comprehensive update[J]. Clin Oncol (R Coll Radiol), 2023, 35(7): 429-445. DOI: 10.1016/j.clon.2023.03.012.
[58]
MYRONENKO A, SIDDIQUEE M M R, YANG D, et al. Automated head and neck tumor segmentation from 3D PET/CT HECKTOR 2022 challenge report[M]. Springer, 2022: 31-37. DOI: 10.1007/978-3-031-27420-6_2.
[59]
SUN X, AN C, WANG L. A coarse-to-fine ensembling framework for head and neck tumor and lymph segmentation in CT and PET images[M]. Springer, 2022: 38-46. DOI: 10.1016/j.acra.2023.05.009.
[60]
JIANG H, HAIMERL J, GU X, et al. A general web-based platform for automatic delineation of head and neck gross tumor volumes in PET/CT images[M]. Springer, 2022: 47-53. DOI: 10.1007/978-3-031-27420-6_4.
[61]
REBAUD L, ESCOBAR T, KHALID F, et al. Simplicity is all you need: out-of-the-box nnUNet followed by binary-weighted radiomic model for segmentation and outcome prediction in head and neck PET/CT[M]. Springer, 2022: 121-134. DOI: 10.1007/978-3-031-27420-6_13.
[62]
SALAHUDDIN Z, CHEN Y, ZHONG X, et al. HNT-AI: an automatic segmentation framework for head and neck primary tumors and lymph nodes in FDG-PET/CT images[M]. Springer, 2022: 212-220. DOI: 10.1007/978-3-031-27420-621.
[63]
WANG A, BAI T, NGUYEN D, et al. Octree boundary transfiner: efficient transformers for tumor segmentation refinement[M]. Springer, 2022: 54-60. DOI: 10.1007/978-3-031-27420-65.
[64]
JAIN A, HUANG J, RAVIPATI Y, et al. Head and neck primary tumor and lymph node auto-segmentation for PET/CT scans[M]. Springer, 2022: 61-69. DOI: 10.1007/978-3-031-27420-6_6.
[65]
KUDOH T, HAGA A, KUDOH K, et al. Radiomics analysis of [(18)F]-fluoro-2-deoxyglucose positron emission tomography for the prediction of cervical lymph node metastasis in tongue squamous cell carcinoma[J]. Oral Radiol, 2023, 39(1): 41-50. DOI: 10.1007/s11282-022-00600-7.
[66]
KOVACS DG, LADEFOGED CN, ANDERSEN KF, et al. Clinical Evaluation of Deep Learning for Tumor Delineation on (18)F-FDG PET/CT of Head and Neck Cancer[J]. J Nucl Med, 2024, 65(4): 623-629. DOI: 10.2967/jnumed.123.266574.

PREV Quantitative assessment techniques of cerebral oxygen metabolism based on magnetic resonance imaging and their clinical application progress
NEXT Advances in precision medicine for dilated cardiomyopathy: Focusing on genetics and cardiac magnetic resonance imaging
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn