Share:
Share this content in WeChat
X
Clinical Article
Multimodal MRI combined with canonical correlation analysis reveals the coupling relationship between brain functional abnormalities and clinical symptoms in parents who have lost their only child
MAO Yuhong  LUO Yifeng  CAO Zhihong  LI Yuefeng  GE Jiyuan  LAN Qingyue  QI Rongfeng  WU Luo'an  ZHANG Li  LU Guangming 

DOI:10.12015/issn.1674-8034.2025.12.001.


[Abstract] Objective To investigate the abnormal patterns of brain structure, function, and network in parents who have lost their only child (shidu parents), and to reveal the overall coupling relationship between these abnormalities and clinical symptoms such as depression, anxiety, and post-traumatic stress disorder (PTSD).Materials and Methods A total of 47 shidu parents (SD) and 36 healthy controls (HC) were included. Multimodal magnetic resonance imaging (MRI) data and clinical symptom ratings were collected from all participants. Voxel-based morphometry (VBM), resting-state functional analysis, and graph-theoretical network analysis were conducted. Canonical correlation analysis (CCA) was further applied to examine the global relationship between multimodal neuroimaging indicators and clinical symptom sets.Results Compared with the HC group, the SD group showed reduced gray matter volume in brain regions including the left hippocampus, bilateral insula, and left medial and paracingulate gyri (P < 0.05, FDR corrected), along with functional abnormalities such as decreased degree centrality in the left temporal lobe (P < 0.05, FDR corrected) and increased regional homogeneity in the right middle temporal gyrus (P < 0.05, FDR corrected). The topological properties of the brain network were also altered in the SD group (P < 0.05, FDR corrected). CCA results demonstrated a significant overall coupling between neuroimaging features and clinical symptoms (canonical correlation coefficient of the first pair: r = 0.890, P < 0.001). Among the imaging indicators, network properties contributed the most (loading r = -0.998) and were most strongly associated with PTSD symptoms (cross-loading r = -0.882).Conclusions Shidu parents exhibit widespread brain alterations, with abnormal brain network topology serving as a core neuroimaging feature strongly linked to PTSD and other clinical symptoms. These findings suggest that brain network reorganization may represent a key neural substrate underlying psychological symptoms in this population.
[Keywords] post-traumatic stress symptoms;parents who have lost their only child;magnetic resonance imaging;multimodal magnetic resonance imaging;brain network analysis;canonical correlation analysis

MAO Yuhong1   LUO Yifeng1*   CAO Zhihong1   LI Yuefeng1   GE Jiyuan1   LAN Qingyue1   QI Rongfeng2   WU Luo'an3   ZHANG Li4   LU Guangming5  

1 Department of Radiology, the Affiliated Yixing Hospital of Jiangsu University, Wuxi 214200, China

2 Department of Medical Imaging, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China

3 Yixing Mental Health Center, Wuxi 214200, China

4 National Clinical Research Center for Mental Disorder (the Second Xiangya Hospital of Central South University), Changsha 410011, China

5 Department of Medical Imaging, General Hospital of Eastern Theater Command, Nanjing 210002, China

Corresponding author: LUO Y F, E-mail: luoyifeng1207@163.com

Conflicts of interest   None.

Received  2025-09-22
Accepted  2025-11-29
DOI: 10.12015/issn.1674-8034.2025.12.001
DOI:10.12015/issn.1674-8034.2025.12.001.

[1]
WANG N, HU Q. "It is not simply the loss of a child": the challenges facing parents who have lost their only child in post-reproductive age in China[J]. Death Stud, 2021, 45(3): 209-218. DOI: 10.1080/07481187.2019.1626941.
[2]
ELI B, ZHOU Y Y, LIANG Y M, et al. A profile analysis of post-traumatic stress disorder and depressive symptoms among Chinese Shidu parents[J/OL]. Eur J Psychotraumatol, 2020, 11(1): 1766770 [2025-09-19]. https://pubmed.ncbi.nlm.nih.gov/33029310/. DOI: 10.1080/20008198.2020.1766770.
[3]
ELI B, LIANG Y M, CHEN Y R, et al. Symptom structure of posttraumatic stress disorder after parental bereavement - a network analysis of Chinese parents who have lost their only child[J/OL]. J Affect Disord, 2021, 295: 673-680 [2025-09-19]. https://pubmed.ncbi.nlm.nih.gov/34509783/. DOI: 10.1016/j.jad.2021.08.123.
[4]
ROGERS C H, FLOYD F J, SELTZER M M, et al. Long-term effects of the death of a child on parents' adjustment in midlife[J]. J Fam Psychol, 2008, 22(2): 203-211. DOI: 10.1037/0893-3200.22.2.203.
[5]
CUKOR J, WYKA K, JAYASINGHE N, et al. The nature and course of subthreshold PTSD[J]. J Anxiety Disord, 2010, 24(8): 918-923. DOI: 10.1016/j.janxdis.2010.06.017.
[6]
SHI Y Q, SHI G Y, ZHAO S K, et al. Atrophy in the supramarginal gyrus associated with impaired cognitive inhibition in grieving Chinese Shidu parents[J/OL]. Eur J Psychotraumatol, 2024, 15(1): 2403250 [2025-09-19]. https://pubmed.ncbi.nlm.nih.gov/39297282/. DOI: 10.1080/20008066.2024.2403250.
[7]
HU X, LUO Y F, QI R F, et al. Altered brain degree centrality and functional connectivity in adults with executive dysfunction after trauma exposure[J/OL]. Psychiatry Res Neuroimaging, 2023, 335: 111713 [2025-09-19]. https://www.ncbi.nlm.nih.gov/pubmed/37690162. DOI: 10.1016/j.pscychresns.2023.111713.
[8]
HU X, LUO Y F, QI R F, et al. Disorganized functional connectivity of anterior insular subnetworks in adults with executive dysfunction after trauma exposure[J/OL]. Neuroscience, 2024, 538: 40-45 [2025-09-19]. https://pubmed.ncbi.nlm.nih.gov/38103859/. DOI: 10.1016/j.neuroscience.2023.12.005.
[9]
ZHUANG X W, YANG Z S, CORDES D. A technical review of canonical correlation analysis for neuroscience applications[J]. Hum Brain Mapp, 2020, 41(13): 3807-3833. DOI: 10.1002/hbm.25090.
[10]
FAROKHIAN F, BEHESHTI I, SONE D, et al. Comparing CAT12 and VBM8 for detecting brain morphological abnormalities in temporal lobe epilepsy[J/OL]. Front Neurol, 2017, 8: 428 [2025-09-19]. https://pubmed.ncbi.nlm.nih.gov/28883807/. DOI: 10.3389/fneur.2017.00428.
[11]
FENG S X, HUANG Y Y, LU H X, et al. Association between degree centrality and neurocognitive impairments in patients with Schizophrenia: a Longitudinal rs-fMRI Study[J/OL]. J Psychiatr Res, 2024, 173: 115-123 [2025-09-19]. https://pubmed.ncbi.nlm.nih.gov/38520845/. DOI: 10.1016/j.jpsychires.2024.03.007.
[12]
YE J Z, XU C X, GUO H G, et al. Structural and functional thalamic alterations in major depressive disorder with comorbid chronic pain[J/OL]. Sci Rep, 2025, 15(1): 16854 [2025-09-19]. https://pubmed.ncbi.nlm.nih.gov/40374655/. DOI: 10.1038/s41598-025-00431-6.
[13]
BAO C H, LIU P, LIU H R, et al. Differences in regional homogeneity between patients with Crohn's disease with and without abdominal pain revealed by resting-state functional magnetic resonance imaging[J]. Pain, 2016, 157(5): 1037-1044. DOI: 10.1097/j.pain.0000000000000479.
[14]
WU H M, SONG Y, YANG X Y, et al. Functional and structural alterations of dorsal attention network in preclinical and early-stage Alzheimer's disease[J]. CNS Neurosci Ther, 2023, 29(6): 1512-1524. DOI: 10.1111/cns.14092.
[15]
CAÑETE-MASSÉ C, CARBÓ-CARRETÉ M, PERÓ-CEBOLLERO M, et al. Abnormal degree centrality and functional connectivity in Down syndrome: a resting-state fMRI study[J/OL]. Int J Clin Health Psychol, 2023, 23(1): 100341 [2025-09-19]. https://pubmed.ncbi.nlm.nih.gov/36262644/. DOI: 10.1016/j.ijchp.2022.100341.
[16]
FARAHANI F V, KARWOWSKI W, LIGHTHALL N R. Application of graph theory for identifying connectivity patterns in human brain networks: a systematic review[J/OL]. Front Neurosci, 2019, 13: 585 [2025-09-19]. https://www.ncbi.nlm.nih.gov/pubmed/31249501. DOI: 10.3389/fnins.2019.00585.
[17]
DE ROECK L, BLOMMAERT J, DUPONT P, et al. Brain network topology and its cognitive impact in adult glioma survivors[J/OL]. Sci Rep, 2024, 14: 12782 [2025-09-19]. https://pubmed.ncbi.nlm.nih.gov/38834633/. DOI: 10.1038/s41598-024-63716-2.
[18]
LEI A A, PHANG V W X, LEE Y Z, et al. Chronic stress-associated depressive disorders: the impact of HPA axis dysregulation and neuroinflammation on the hippocampus-a mini review[J/OL]. Int J Mol Sci, 2025, 26(7): 2940 [2025-09-19]. https://pubmed.ncbi.nlm.nih.gov/40243556/. DOI: 10.3390/ijms26072940.
[19]
MUHTADIE L, HAASE C M, VERSTAEN A, et al. Neuroanatomy of expressive suppression: The role of the Insula[J]. Emotion, 2021, 21(2): 405-418. DOI: 10.1037/emo0000710.
[20]
WISE T, RADUA J, VIA E, et al. Common and distinct patterns of grey-matter volume alteration in major depression and bipolar disorder: evidence from voxel-based meta-analysis[J]. Mol Psychiatry, 2017, 22(10): 1455-1463. DOI: 10.1038/mp.2016.72.
[21]
BUBB E J, METZLER-BADDELEY C, AGGLETON J P. The Cingulum bundle: Anatomy, function, and dysfunction[J/OL]. Neurosci Biobehav Rev, 2018, 92: 104-127 [2025-09-19]. https://pubmed.ncbi.nlm.nih.gov/29753752/. DOI: 10.1016/j.neubiorev.2018.05.008.
[22]
BREUKELAAR I A, BRYANT R A, KORGAONKAR M S. The functional connectome in posttraumatic stress disorder[J/OL]. Neurobiol Stress, 2021, 14: 100321 [2025-09-19]. https://www.ncbi.nlm.nih.gov/pubmed/33912628. DOI: 10.1016/j.ynstr.2021.100321.
[23]
YANG Y R, CHEN Y J, SANG F, et al. Successful or pathological cognitive aging? Converging into a "frontal preservation, temporal impairment (FPTI)" hypothesis[J]. Sci Bull (Beijing), 2022, 67(22): 2285-2290. DOI: 10.1016/j.scib.2022.11.004.
[24]
SCHIAVONE F L, MCKINNON M C, LANIUS R A. Psychotic-Like Symptoms and the Temporal Lobe in Trauma-Related Disorders: Diagnosis, Treatment, and Assessment of Potential Malingering [J/OL]. Chronic Stress (Thousand Oaks), 2018, 2: 23131 [2025-09-19]. https://www.ncbi.nlm.nih.gov/pubmed/32440584. DOI: 10.1177/2470547018797046.
[25]
LIU L Y, WU J H, GENG H Y, et al. Long-term stress and trait anxiety affect brain network balance in dynamic cognitive computations[J]. Cereb Cortex, 2022, 32(14): 2957-2971. DOI: 10.1093/cercor/bhab393.
[26]
SUN S, YU H, YU R, et al. Functional connectivity between the amygdala and prefrontal cortex underlies processing of emotion ambiguity [J/OL]. Transl Psychiatry, 2023, 13(1): 334. [2025-09-19]. https://www.ncbi.nlm.nih.gov/pubmed/37898626. DOI: 10.1038/s41398-023-02625-w.
[27]
ZHOU M, LI X L, GAO Q S. Multiscale brain abnormalities in young male military patients with depression based on resting-state functional magnetic resonance imaging[J]. Chin J Magn Reson Imag, 2023, 14(3): 42-47, 64. DOI: 10.12015/issn.1674-8034.2023.03.008.
[28]
HE Y, ZHAO B, LIU Z, et al. Individualized identification value of stress-related network structural-functional properties and HPA axis reactivity for subthreshold depression [J/OL]. Transl Psychiatry, 2024, 14(1): 501 [2025-09-19]. https://pubmed.ncbi.nlm.nih.gov/39715743/. DOI: 10.1038/s41398-024-03210-5.
[29]
DURHAM E L, JEONG H J, MOORE T M, et al. Association of gray matter volumes with general and specific dimensions of psychopathology in children[J]. Neuropsychopharmacology, 2021, 46(7): 1333-1339. DOI: 10.1038/s41386-020-00952-w.
[30]
SEGAL A, PARKES L, AQUINO K, et al. Regional, circuit and network heterogeneity of brain abnormalities in psychiatric disorders[J]. Nat Neurosci, 2023, 26(9): 1613-1629. DOI: 10.1038/s41593-023-01404-6.
[31]
PLOSKI J E, VAIDYA V A. The neurocircuitry of posttraumatic stress disorder and major depression: insights into overlapping and distinct circuit dysfunction-a tribute to ron duman[J]. Biol Psychiatry, 2021, 90(2): 109-117. DOI: 10.1016/j.biopsych.2021.04.009.
[32]
BOER N S D, BRUIN L C D, GEURTS J J G, et al. The Network Theory of Psychiatric Disorders: A Critical Assessment of the Inclusion of Environmental Factors[J/OL]. Front Psychol, 2021, 12: 623970 [2025-09-19]. https://pubmed.ncbi.nlm.nih.gov/33613399/. DOI: 10.3389/fpsyg.2021.623970.
[33]
WANG X Y, KRIEGER-REDWOOD K, LYU B H, et al. The brain's topographical organization shapes dynamic interaction patterns that support flexible behavior based on rules and long-term knowledge[J/OL]. J Neurosci, 2024, 44(22): e2223232024 [2025-09-19]. https://pubmed.ncbi.nlm.nih.gov/38527807/. DOI: 10.1523/JNEUROSCI.2223-23.2024.
[34]
SANG L Q, LIU C, WANG L, et al. Disrupted brain structural connectivity network in subcortical ischemic vascular cognitive impairment with No dementia[J/OL]. Front Aging Neurosci, 2020, 12: 6 [2025-09-19]. https://pubmed.ncbi.nlm.nih.gov/32063840/. DOI: 10.3389/fnagi.2020.00006.
[35]
BACKHAUSEN L L, HERTING M M, TAMNES C K, et al. Best practices in structural neuroimaging of neurodevelopmental disorders[J]. Neuropsychol Rev, 2022, 32(2): 400-418. DOI: 10.1007/s11065-021-09496-2.
[36]
YINGMEI H, CHAOJIE W, YI Z, et al. Research progress on brain network imaging biomarkers of subjective cognitive decline [J/OL]. Front Neurosci, 2025, 19 [2025-09-19]. https://pubmed.ncbi.nlm.nih.gov/40018359/. DOI: 10.3389/fnins.2025.1503955.
[37]
PEROVNIK M, RUS T, SCHINDLBECK K A, et al. Functional brain networks in the evaluation of patients with neurodegenerative disorders[J]. Nat Rev Neurol, 2023, 19(2): 73-90. DOI: 10.1038/s41582-022-00753-3.

PREV Research progress in the application of diffusion-weighted imaging in hematological malignancies
NEXT Cross-attention fusion of static-dynamic graph convolutional networks for Parkinson<sup><sup>,</sup></sup>s disease diagnosis
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn