Share:
Share this content in WeChat
X
Clinical Article
Default mode network functional connectivity changes in adolescent bipolar disorder patients after short-term treatment
ZHU Pengyu  CHEN Xiong  ZOU Lulu  CHEN Fang  GU Junchen  WANG Yuxi  XIANG Jialin  DENG Xiumin  QIN Kun  AI Chunqi  CHEN Wen 

DOI:10.12015/issn.1674-8034.2025.12.003.


[Abstract] Objective To investigate changes in default mode network (DMN) functional connectivity (FC) in adolescents with bipolar disorder (BD) after short-term treatment and their correlation with clinical symptoms.Materials and Methods Thirty patients with BD were enrolled and underwent follow-up assessments after two weeks of naturalistic treatment, along with 33 age- and sex-matched healthy control (HC). Clinical assessments included: the 17-item Hamilton Depression Rating Scale (HAMD-17) for depressive symptoms, the Young Mania Rating Scale (YMRS) for manic symptoms, and the Hamilton Anxiety Rating Scale (HAMA) for anxiety symptoms. Resting-state functional magnetic resonance imaging (rs-fMRI) scans were acquired for all participants at both baseline and the 2-week follow-up timepoint. Using the DMN as seed regions, we performed whole-brain FC analysis. Three primary analyses were conducted: (1) Within-patient longitudinal comparison to identify FC changes between pre- and post-treatment; (2) Between-group cross-sectional comparisons (baseline BD vs. HC; post-treatment BD vs. HC) using two-sample t-tests; (3) Correlation analysis between significant treatment-related FC changes and clinical scale scores.Results The study found that after two weeks of treatment, the functional connectivity of the posterior cingulate cortex (PCC) in patients changed, showing weakened connectivity with the right calcarine cortex and enhanced connectivity between the posterior cingulate cortex and the left middle occipital gyrus (t = 5.79, P = 0.001; t = 4.72, P = 0.004). However, no significant correlations were observed between these changes and clinical scale scores (r = 0.183, P = 0.466; r = 0.238, P = 0.342; r = 0.086, P = 0.684; r = -0.121, P = 0.631; r = -0.031, P = 0.902; r = -0.213, P = 0.308). Compared to the healthy control group, baseline BD patients exhibited abnormalities in the visual network (VN) and the salience network (SN). After treatment, these abnormalities in the VN and SN were not fully resolved, and slight abnormalities emerged in the frontoparietal network (FPN).Conclusions Short-term treatment can partially modulate the abnormal functional connectivity between the DMN, VN, and SN in BD patients. These neuroimaging findings provide new directions for understanding the neurobiological mechanisms of BD and optimizing early intervention strategies.
[Keywords] bipolar disorder;magnetic resonance imaging;functional connectivity;default mode network;visual network;salience network

ZHU Pengyu1   CHEN Xiong2   ZOU Lulu2   CHEN Fang2   GU Junchen2   WANG Yuxi1   XIANG Jialin1   DENG Xiumin1   QIN Kun1   AI Chunqi2   CHEN Wen1*  

1 Department of Radiology, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China

2 Center for Mental Health Services, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China

Corresponding author: CHEN W, E-mail: taiheren007@163.com

Conflicts of interest   None.

Received  2025-06-17
Accepted  2025-10-29
DOI: 10.12015/issn.1674-8034.2025.12.003
DOI:10.12015/issn.1674-8034.2025.12.003.

[1]
DE PRISCO M, OLIVA V, FICO G, et al. Emotion dysregulation in bipolar disorder compared to other mental illnesses: a systematic review and meta-analysis[J]. Psychol Med, 2023, 53(16): 7484-7503. DOI: 10.1017/s003329172300243x.
[2]
SACU S, HERMANN A, BANASCHEWSKI T, et al. The long-term correlates of developmental stress on whole-brain functional connectivity during emotion regulation[J/OL]. Transl Psychiatry, 2025, 15(1): 152 [2025-06-17]. https://pubmed.ncbi.nlm.nih.gov/40251158/. DOI: 10.1038/s41398-025-03374-8.
[3]
HU Z, TAN Y, ZHOU F, et al. Aberrant functional connectivity within and between brain networks in patients with early-onset bipolar disorder[J]. J Affect Disord, 2023, 338: 41-51. DOI: 10.1016/j.jad.2023.05.057.
[4]
National Academies of Sciences, Engineering, and Medicine. 2019. The Promise of Adolescence: Realizing Opportunity for All Youth. Washington, DC: The National Academies Press. https://doi.org/10.17226/25388.
[5]
RAIMONDO L, OLIVEIRA Ĺ A F, HEIJ J, et al. Advances in resting state fMRI acquisitions for functional connectomics[J/OL]. Neuroimage, 2021, 243: 118503 [2025-06-17]. https://pubmed.ncbi.nlm.nih.gov/34479041/. DOI: 10.1016/j.neuroimage.2021.118503.
[6]
BISWAL B B, UDDIN L Q. The history and future of resting-state functional magnetic resonance imaging[J]. Nature, 2025, 641(8065): 1121-1131. DOI: 10.1038/s41586-025-08953-9.
[7]
SYAN S K, SMITH M, FREY B N, et al. Resting-state functional connectivity in individuals with bipolar disorder during clinical remission: a systematic review[J]. J Psychiatry Neurosci, 2018, 43(5): 298-316. DOI: 10.1503/jpn.170175.
[8]
KOUNIOS J, FLECK J I, GREEN D L, et al. The origins of insight in resting-state brain activity[J]. Neuropsychologia, 2008, 46(1): 281-291. DOI: 10.1016/j.neuropsychologia.2007.07.013.
[9]
PAQUOLA C, GARBER M, FRÄSSLE S, et al. The architecture of the human default mode network explored through cytoarchitecture, wiring and signal flow[J]. Nat Neurosci, 2025, 28(3): 654-664. DOI: 10.1038/s41593-024-01868-0.
[10]
SATPUTE A B, LINDQUIST K A. The Default Mode Network's Role in Discrete Emotion[J]. Trends Cogn Sci, 2019, 23(10): 851-864. DOI: 10.1016/j.tics.2019.07.003.
[11]
RAI S, GRIFFITHS K R, BREUKELAAR I A, et al. Default-mode and fronto-parietal network connectivity during rest distinguishes asymptomatic patients with bipolar disorder and major depressive disorder[J/OL]. Transl Psychiatry, 2021, 11(1): 547 [2025-06-17]. https://doi.org/10.1038/s41398-021-01660-9. DOI: 10.1038/s41398-021-01660-9.
[12]
DU M, ZHANG L, LI L, et al. Abnormal transitions of dynamic functional connectivity states in bipolar disorder: A whole-brain resting-state fMRI study[J]. J Affect Disord, 2021, 289: 7-15. DOI: 10.1016/j.jad.2021.04.005.
[13]
YESHURUN Y, NGUYEN M, HASSON U. The default mode network: where the idiosyncratic self meets the shared social world[J]. Nat Rev Neurosci, 2021, 22(3): 181-192. DOI: 10.1038/s41583-020-00420-w.
[14]
KOVÁCS L N, TAKACS Z K, TÓTH Z, et al. Rumination in major depressive and bipolar disorder - a meta-analysis[J]. J Affect Disord, 2020, 276: 1131-1141. DOI: 10.1016/j.jad.2020.07.131.
[15]
ASLAN I H, BALDWIN D S. Ruminations and their correlates in depressive episodes: Between-group comparison in patients with unipolar or bipolar depression and healthy controls[J]. J Affect Disord, 2021, 280(Pt A): 1-6. DOI: 10.1016/j.jad.2020.10.064.
[16]
LARSEN B, LUNA B. Adolescence as a neurobiological critical period for the development of higher-order cognition[J]. Neurosci Biobehav Rev, 2018, 94: 179-195. DOI: 10.1016/j.neubiorev.2018.09.005.
[17]
JAWORSKA N, MACQUEEN G. Adolescence as a unique developmental period[J]. J Psychiatry Neurosci, 2015, 40(5): 291-293. DOI: 10.1503/jpn.150268.
[18]
YAN C G, WANG X D, ZUO X N, et al. DPABI: Data Processing & Analysis for (Resting-State) Brain Imaging[J]. Neuroinformatics, 2016, 14(3): 339-351. DOI: 10.1007/s12021-016-9299-4.
[19]
ASHBURNER J, FRISTON K J. Unified segmentation[J]. NeuroImage, 2005, 26(3): 839-851. DOI: 10.1016/j.neuroimage.2005.02.018.
[20]
ANDREWS-HANNA J R, REIDLER J S, SEPULCRE J, et al. Functional-anatomic fractionation of the brain's default network[J]. Neuron, 2010, 65(4): 550-562. DOI: 10.1016/j.neuron.2010.02.005.
[21]
ZHANG L, OPMEER E M, RUHÉ H G, et al. Brain activation during self- and other-reflection in bipolar disorder with a history of psychosis: Comparison to schizophrenia[J]. Neuroimage Clin, 2015, 8: 202-209. DOI: 10.1016/j.nicl.2015.04.010.
[22]
SUN H, YAN R, CHEN Z, et al. Common and disease-specific patterns of functional connectivity and topology alterations across unipolar and bipolar disorder during depressive episodes: a transdiagnostic study[J/OL]. Transl Psychiatry, 2025, 15(1): 58 [2025-06-17]. https://pubmed.ncbi.nlm.nih.gov/39966397/. DOI: 10.1038/s41398-025-03282-x.
[23]
KABOODVAND N, BÄCKMAN L, NYBERG L, et al. The retrosplenial cortex: A memory gateway between the cortical default mode network and the medial temporal lobe[J]. Hum Brain Mapp, 2018, 39(5): 2020-2034. DOI: 10.1002/hbm.23983.
[24]
YANG J, KUDULAITI N, CHEN Z, et al. Within and beyond the visual cortex: brain tumors induce highly sensitive plasticity of visual processing in whole-brain neural functional networks[J]. Cereb Cortex, 2022, 32(20): 4422-4435. DOI: 10.1093/cercor/bhab492.
[25]
ELLIOTT M L, ROMER A, KNODT A R, et al. A Connectome-wide Functional Signature of Transdiagnostic Risk for Mental Illness[J]. Biol Psychiatry, 2018, 84(6): 452-459. DOI: 10.1016/j.biopsych.2018.03.012.
[26]
TÜRKÖZER H B, LIZANO P, ADHAN I, et al. Regional and Sex-Specific Alterations in the Visual Cortex of Individuals With Psychosis Spectrum Disorders[J]. Biol Psychiatry, 2022, 92(5): 396-406. DOI: 10.1016/j.biopsych.2022.03.023.
[27]
LU F, CUI Q, HUANG X, et al. Anomalous intrinsic connectivity within and between visual and auditory networks in major depressive disorder[J/OL]. Prog Neuropsychopharmacol Biol Psychiatry, 2020, 100: 109889 [2025-06-17]. https://doi.org/10.1016/j.pnpbp.2020.109889. DOI: 10.1016/j.pnpbp.2020.109889.
[28]
ZHANG Z, ZHANG H, XIE C M, et al. Task-related functional magnetic resonance imaging-based neuronavigation for the treatment of depression by individualized repetitive transcranial magnetic stimulation of the visual cortex[J]. Sci China Life Sci, 2021, 64(1): 96-106. DOI: 10.1007/s11427-020-1730-5.
[29]
YAN C G, CHEN X, LI L, et al. Reduced default mode network functional connectivity in patients with recurrent major depressive disorder[J]. Proc Natl Acad Sci U S A, 2019, 116(18): 9078-9083. DOI: 10.1073/pnas.1900390116.
[30]
MENON V. Large-scale brain networks and psychopathology: a unifying triple network model[J]. Trends Cogn Sci, 2011, 15(10): 483-506. DOI: 10.1016/j.tics.2011.08.003.
[31]
SCALABRINI A, VAI B, POLETTI S, et al. All roads lead to the default-mode network-global source of DMN abnormalities in major depressive disorder[J]. Neuropsychopharmacology, 2020, 45(12): 2058-2069. DOI: 10.1038/s41386-020-0785-x.
[32]
HAWKE L D, PARIKH S V, MICHALAK E E. Stigma and bipolar disorder: a review of the literature[J]. J Affect Disord, 2013, 150(2): 181-191. DOI: 10.1016/j.jad.2013.05.030.
[33]
LIU C, PU W, WU G, et al. Abnormal resting-state cerebral-limbic functional connectivity in bipolar depression and unipolar depression[J/OL]. BMC Neurosci, 2019, 20(1): 30 [2025-06-17]. https://doi.org/10.1186/s12868-019-0508-6. DOI: 10.1186/s12868-019-0508-6.
[34]
GONG J, WANG J, CHEN P, et al. Large-scale network abnormality in bipolar disorder: A multimodal meta-analysis of resting-state functional and structural magnetic resonance imaging studies[J]. J Affect Disord, 2021, 292: 9-20. DOI: 10.1016/j.jad.2021.05.052.
[35]
PAN N, QIN K, PATINO L R, et al. Aberrant brain network topology in youth with a familial risk for bipolar disorder: a task-based fMRI connectome study[J]. J Child Psychol Psychiatry, 2024, 65(8): 1072-1086. DOI: 10.1111/jcpp.13946.
[36]
CANBEYLI R. Sensorimotor modulation of mood and depression: in search of an optimal mode of stimulation[J/OL]. Front Hum Neurosci, 2013, 7: 428 [2025-06-17]. https://doi.org/10.3389/fnhum.2013.00428. DOI: 10.3389/fnhum.2013.00428.
[37]
CROARKIN P E, LEVINSON A J, DASKALAKIS Z J. Evidence for GABAergic inhibitory deficits in major depressive disorder[J]. Neurosci Biobehav Rev, 2011, 35(3): 818-825. DOI: 10.1016/j.neubiorev.2010.10.002.
[38]
MALLER J J, THOMSON R H, ROSENFELD J V, et al. Occipital bending in depression[J]. Brain, 2014, 137(Pt 6): 1830-1837. DOI: 10.1093/brain/awu072.
[39]
LU J, ZHANG Z, YIN X, et al. An entorhinal-visual cortical circuit regulates depression-like behaviors[J]. Mol Psychiatry, 2022, 27(9): 3807-3820. DOI: 10.1038/s41380-022-01540-8.
[40]
ZHUKOVSKY P, ANDERSON J A E, COUGHLAN G, et al. Coordinate-Based Network Mapping of Brain Structure in Major Depressive Disorder in Younger and Older Adults: A Systematic Review and Meta-Analysis[J]. Am J Psychiatry, 2021, 178(12): 1119-1128. DOI: 10.1176/appi.ajp.2021.21010088.
[41]
ZHAO L, BO Q, ZHANG Z, et al. Disrupted default mode network connectivity in bipolar disorder: a resting-state fMRI study[J/OL]. BMC Psychiatry, 2024, 24(1): 428 [2025-06-17]. https://doi.org/10.1186/s12888-024-05869-y. DOI: 10.1186/s12888-024-05869-y.
[42]
BROYD S J, DEMANUELE C, DEBENER S, et al. Default-mode brain dysfunction in mental disorders: a systematic review[J]. Neurosci Biobehav Rev, 2009, 33(3): 279-296. DOI: 10.1016/j.neubiorev.2008.09.002.
[43]
MUTHULINGAM J A, HANSEN T M, DREWES A M, et al. Disrupted functional connectivity of default mode and salience networks in chronic pancreatitis patients[J]. Clin Neurophysiol, 2020, 131(5): 1021-1029. DOI: 10.1016/j.clinph.2020.01.016.
[44]
LOPEZ-LARSON M P, SHAH L M, WEEKS H R, et al. Abnormal Functional Connectivity Between Default and Salience Networks in Pediatric Bipolar Disorder[J]. Biol Psychiatry Cogn Neurosci Neuroimaging, 2017, 2(1): 85-93. DOI: 10.1016/j.bpsc.2016.10.001.
[45]
MAGIONCALDA P, MARTINO M, CONIO B, et al. Functional connectivity and neuronal variability of resting state activity in bipolar disorder--reduction and decoupling in anterior cortical midline structures[J]. Hum Brain Mapp, 2015, 36(2): 666-682. DOI: 10.1002/hbm.22655.
[46]
SHA Z, WAGER T D, MECHELLI A, et al. Common Dysfunction of Large-Scale Neurocognitive Networks Across Psychiatric Disorders[J]. Biol Psychiatry, 2019, 85(5): 379-388. DOI: 10.1016/j.biopsych.2018.11.011.
[47]
ZHANG L, QIN K, PAN N, et al. Shared and distinct patterns of default mode network dysfunction in major depressive disorder and bipolar disorder: A comparative meta-analysis[J]. J Affect Disord, 2025, 368: 23-32. DOI: 10.1016/j.jad.2024.09.021.
[48]
COLIC L, CLARK A, SANKAR A, et al. Gender-related association among childhood maltreatment, brain structure and clinical features in bipolar disorder[J]. Eur Neuropsychopharmacol, 2022, 63: 35-46. DOI: 10.1016/j.euroneuro.2022.07.186.

PREV Cross-attention fusion of static-dynamic graph convolutional networks for Parkinson<sup><sup>,</sup></sup>s disease diagnosis
NEXT Research on diagnostic and staging models for Parkinson<sup><sup>,</sup></sup>s disease patients using T1 images based on interpretable machine learning
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn