Share:
Share this content in WeChat
X
Clinical Article
Quantitative study on the brain of children with global developmental delay using synthetic MRI techniques
LI Tianyu  ZHAO Xin  ZHOU Liang  WANG Changhao  LU Lin  CHENG Meiying  ZHANG Xiaoan 

DOI:10.12015/issn.1674-8034.2025.12.006.


[Abstract] Objective Using synthetic MRI (SyMRI) technology to analyze brain microstructural changes in children with global developmental delay and evaluate the diagnostic efficacy of T1 and T2 relaxation values and proton density (PD) values in SyMRI.Materials and Methods The study was conducted from May 2024 to October 2024, involving 55 children with global developmental delay (GDD group) and 30 typically developing children (TD group) from the Third Affiliated Hospital of Zhengzhou University. SyMRI sequences and clinical data were collected. Post-processing was performed to derive SyMRI parameters, and T1 and T2 relaxation values and PD values were measured in eight gray matter regions of interest (ROIs) for all children. Correlation analyses were performed between the T1, T2, and PD values of brain regions with significant differences and clinical scales. Receiver operating characteristic (ROC) curve analyses were used to evaluate the diagnostic efficacy SyMRI parameters.Results Compared to the TD group, the GDD group showed increased T1 relaxation values in the left parietal gray matter and right occipital gray matter, T2 relaxation values in the left parietal gray matter and bilateral temporal gray matter, as well as PD values in the left temporal gray matter and right occipital gray matter. These differences were statistically significant (P < 0.003). Correlation analyses revealed that the T1 relaxation values in the left parietal gray matter were positively correlated with adaptive behavior developmental quotient (r = 0.327, P = 0.015) and personal-social developmental quotient (r = 0.535, P < 0.001). The T2 relaxation values in the left parietal gray matter were positively correlated with adaptive behavior developmental quotient (r = 0.449, P = 0.001). The T2 relaxation values in the left temporal gray matter were positively correlated with adaptive behavior developmental quotient (r = 0.348, P = 0.009) and personal-social developmental quotient (r = 0.321, P = 0.017). The PD values in the left temporal gray matter were positively correlated with fine motor developmental quotient (r = 0.322, P = 0.017). ROC curve analysis indicated that the T2 relaxation value of left parietal gray matter had the largest area under the curve, at 0.752.Conclusions SyMRI parameters can indicate abnormal brain microstructure in GDD children, aiding in understanding GDD pathophysiology and offering potential value for early recognition and diagnosis.
[Keywords] global developmental delay;synthetic magnetic resonance imaging;magnetic resonance imaging;brain microstructure;Gesell Developmental Scales

LI Tianyu1, 2, 3   ZHAO Xin1, 2, 3   ZHOU Liang1, 2, 3   WANG Changhao1, 2, 3   LU Lin1, 2, 3   CHENG Meiying1, 2, 3   ZHANG Xiaoan1, 2, 3*  

1 Department of Radiology, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China

2 Henan International Joint Laboratory of Neuroimaging, Zhengzhou 450052, China

3 Henan Key Laboratory of Pediatric Neuroimaging Medicine, Zhengzhou 450052, China

Corresponding author: ZHANG X A, E-mail: zxa@zzu.edu.cn

Conflicts of interest   None.

Received  2025-07-03
Accepted  2025-10-31
DOI: 10.12015/issn.1674-8034.2025.12.006
DOI:10.12015/issn.1674-8034.2025.12.006.

[1]
ZHANG J, XU Y, LIU Y, et al. Genetic Testing for Global Developmental Delay in Early Childhood[J/OL]. JAMA Netw Open, 2024, 7(6): e2415084 [2025-06-12]. https://pmc.ncbi.nlm.nih.gov/articles/PMC11154162. DOI: 10.1001/jamanetworkopen.2024.15084.
[2]
FIRST M B. Diagnostic and statistical manual of mental disorders, 5th edition, and clinical utility[J]. J Nerv Ment Dis, 2013, 201(9): 727-729. DOI: 10.1097/NMD.0b013e3182a2168a.
[3]
SUN H M, LI Q Y, XIAO R Y, et al. A structural MRI study of global developmental delay in infants (<2 years old)[J/OL]. Front Neurol, 2022, 13: 952405 [2025-06-12]. https://pmc.ncbi.nlm.nih.gov/articles/PMC9434372. DOI: 10.3389/fneur.2022.952405.
[4]
MOESCHLER J B, SHEVELL M. Comprehensive evaluation of the child with intellectual disability or global developmental delays[J/OL]. Pediatrics, 2014, 134(3): e903-e918 [2025-05-12]. https://pmc.ncbi.nlm.nih.gov/articles/PMC9923626. DOI: 10.1542/peds.2014-1839.
[5]
LI Q, TONG X B. The Clinical Application Value of the Gesell Developmental Schedules in Common Developmental Disorders[J]. Maternal and Child Health Care of China, 2024, 39(9): 1611-1615. DOI: 10.19829/j.zgfybj.issn.1001-4411.2024.09.016.
[6]
TADDEI M, BULGHERONI S, TOFFALINI E, et al. Developmental profiles of young children with autism spectrum disorder and global developmental delay: A study with the Griffiths III scales[J]. Autism Res, 2023, 16(7): 1344-1359. DOI: 10.1002/aur.2953.
[7]
POSTMA J K, HARRISON M A, KUTCHER S, et al. The diagnostic yield of genetic and metabolic investigations in syndromic and nonsyndromic patients with autism spectrum disorder, global developmental delay, or intellectual disability from a dedicated neurodevelopmental disorders genetics clinic[J/OL]. Am J Med Genet A, 2024, 194(11): e63791 [2025-05-12]. https://pubmed.ncbi.nlm.nih.gov/39031819. DOI: 10.1002/ajmg.a.63791.
[8]
GOMES R N, BHAT Y R, KINI S, et al. Metabolic Evaluation in Children aged 3 months to 2 years with Global Developmental Delay[J]. Indian J Pediatr, 2025, 92(2): 123-130. DOI: 10.1007/s12098-023-04927-9.
[9]
ALDOSARI A N, ALDOSARI T S. Comprehensive evaluation of the child with global developmental delays or intellectual disability[J/OL]. Clin Exp Pediatr, 2024, 67(9): 435-446 [2025-06-12]. https://pmc.ncbi.nlm.nih.gov/articles/PMC11374451. DOI: 10.3345/cep.2023.01697.
[10]
Children's Health Care Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing Pediatric Specialty Quality Control and Improvement Center, China Maternal and Child Health Association Child Brain Science and Brain Health Promotion Committee, et al. Children's Health Care Center, Chinese guideline for the diagnosis of global developmental delay[J]. Chinese Journal of Applied Clinical Pediatrics, 2024, 39(7): 481-489. DOI: 10.3760/cma.j.cn101070-20240426-00262.
[11]
ZHENG Y T, LIU C Y, LAI H. Research progress of multimodal MRI in children with developmental delay[J]. Journal of Imaging Research and Medical Applications, 2024, 8: 15-17. DOI: 10.3969/j.issn.2096-3807.2024.08.005.
[12]
ALAMRI A, ALJADHAI Y I, ALRASHED A, et al. Identifying Clinical Clues in Children With Global Developmental Delay/Intellectual Disability With Abnormal Brain Magnetic Resonance Imaging (MRI)[J]. J Child Neurol, 2021, 36(6): 432-439. DOI: 10.1177/0883073820977330.
[13]
SONG Q, WANG J, WEI C L, et al. A Longitudinal Study of the Prognostic Value of Magnetic Resonance Diffusion Tensor Imaging in Children with Intellectual Disability/Global Developmental Delay[J]. Journal of Imaging Research and Medical Applications, 2024, 24: 74-76, 80. DOI: 10.3969/j.issn.2096-3807.2024.24.022.
[14]
ZHANG X X, ZHAO X, SHEN Y Y, et al. Application of Magnetic Resonance Diffusion Kurtosis Imaging in Children with Global Developmental Delay[J]. Chinese Journal of Medical Imaging, 2024, 32(8): 761-766. DOI: 10.3969/j.issn.1005-5185.2024.08.002.
[15]
RAJVANSHI N, BHAKAT R, SAXENA S, et al. Magnetic Resonance Spectroscopy in Children With Developmental Delay: Time to Look Beyond Conventional Magnetic Resonance Imaging (MRI)[J]. J Child Neurol, 2021, 36(6): 440-446. DOI: 10.1177/0883073820978006.
[16]
TIAN Z, ZHU Q, WANG R, et al. The advantages of the magnetic resonance image compilation (MAGiC) method for the prognosis of neonatal hypoglycemic encephalopathy[J/OL]. Front Neurosci, 2023, 17: 1179535 [2025-06-12]. https://pmc.ncbi.nlm.nih.gov/articles/PMC10309001. DOI: 10.3389/fnins.2023.1179535.
[17]
DONG Y, DENG X, XIE M, et al. Gestational age-related changes in relaxation times of neonatal brain by quantitative synthetic magnetic resonance imaging[J/OL]. Brain Behav, 2023, 13(7): e3068 [2025-05-12]. https://pmc.ncbi.nlm.nih.gov/articles/PMC10338790. DOI: 10.1002/brb3.3068.
[18]
LIU S, MENG T, RUSSO C, et al. Brain volumetric and fractal analysis of synthetic MRI: A comparative study with conventional 3D T1-weighted images[J/OL]. Eur J Radiol, 2021, 141: 109782 [2025-06-12]. https://pubmed.ncbi.nlm.nih.gov/34049059. DOI: 10.1016/j.ejrad.2021.109782.
[19]
ZHOU X, LIN W S, ZOU F Y, et al. Biomarkers of preschool children with autism spectrum disorder: quantitative analysis of whole-brain tissue component volumes, intelligence scores, ADOS-CSS, and ages of first-word production and walking onset[J]. World J Pediatr, 2024, 20(10): 1059-1069. DOI: 10.1007/s12519-024-00800-7.
[20]
WANG C H, CHENG M Y, SHEN Y Y, et al. The application research of synthetic MRI in autism spectrum disorder in children with or without mental retardation[J]. Journal of China Clinic Medical Imaging, 2024, 35(6): 386-390, 395. DOI: 10.12117/jccmi.2024.06.002.
[21]
LIU S L, ZHOU Y S, CHEN X H, et al. Application of synthetic MRI in neonatal brain myelin development evaluation[J]. Radiologic Practice, 2025, 40(1): 78-83. DOI: 10.13609/j.cnki.1000-0313.2025.01.014.
[22]
LI L, ZHAO J S, GAO Z F, et al. Application of apparent diffusion coefficient in children aged 2-12 years with intellectual disability/global developmental delay who have normal conventional brain MRI findings[J]. Chinese Journal of Contemporary Pediatrics, 2019, 21(6): 541-546. DOI: 10.7499/j.issn.1008-8830.2019.06.008.
[23]
VERMA A, SAGAR N C, KUMAR A, et al. Diagnostic value of diffusion tensor imaging derived metrics as biomarkers of cerebral changes in developmental delay[J]. Indian J Radiol Imaging, 2015, 25(4): 415-420. DOI: 10.4103/0971-3026.169457.
[24]
GRIFFITHS P D, BATTY R, WARREN D, et al. The use of MR imaging and spectroscopy of the brain in children investigated for developmental delay: what is the most appropriate imaging strategy?[J]. Eur Radiol, 2011, 21(9): 1820-1830. DOI: 10.1007/s00330-011-2144-0.
[25]
DIONÍSIO A, ESPÍRITO A, PEREIRA A C, et al. Neurochemical differences in core regions of the autistic brain: a multivoxel (1)H-MRS study in children[J/OL]. Sci Rep, 2024, 14(1): 2374 [2025-06-12]. https://pmc.ncbi.nlm.nih.gov/articles/PMC10824733. DOI: 10.1038/s41598-024-52279-x.
[26]
CHANRAUD S, ZAHR N, SULLIVAN E V, et al. MR diffusion tensor imaging: a window into white matter integrity of the working brain[J]. Neuropsychol Rev, 2010, 20(2): 209-225. DOI: 10.1007/s11065-010-9129-7.
[27]
HE L, LIU Z, REN Q Y, et al. Quantitative study of diffusion tensor imaging in white matter of developmental delay children[J]. Journal of Hebei Medical University, 2015, 36(1): 38-41. DOI: 10.3969/j.issn.1007-3205.2015.01.014.
[28]
GOPALAN A B, VAN UDEN L, SPRENGER R R, et al. Lipotype acquisition during neural development is not recapitulated in stem cell-derived neurons[J/OL]. Life Sci Alliance, 2024, 7(5): e202402622 [2025-07-03]. https://pmc.ncbi.nlm.nih.gov/articles/PMC10902711. DOI: 10.26508/lsa.202402622.
[29]
DI MARCO B, BONACCORSO C M, ALOISI E, et al. Neuro-Inflammatory Mechanisms in Developmental Disorders Associated with Intellectual Disability and Autism Spectrum Disorder: A Neuro- Immune Perspective[J]. CNS Neurol Disord Drug Targets, 2016, 15(4): 448-463. DOI: 10.2174/1871527315666160321105039.
[30]
GARCÍA-DOMÍNGUEZ M. Neuroinflammation: Mechanisms, Dual Roles, and Therapeutic Strategies in Neurological Disorders[J/OL]. Curr Issues Mol Biol, 2025, 47(6): 417 [2025-10-14]. https://pmc.ncbi.nlm.nih.gov/articles/PMC12191620. DOI: 10.3390/cimb47060417.
[31]
GUEVARA C A, DEL VALLE P, MERCEDES C R. Microglia and Reactive Oxygen Species Are Required for Behavioral Susceptibility to Chronic Social Defeat Stress[J]. J Neurosci, 2020, 40(7): 1370-1372. DOI: 10.1523/jneurosci.2175-19.2019.
[32]
ZHOU L, ZHAO X, CHENG M Y, et al. Three-dimensional pseudo-continuous arterial spin labeling reveals cerebral perfusion abnormalities in children with global developmental delay[J]. Chinese Journal of Magnetic Resonance Imaging, 2025, 16(5): 113-119. DOI: 10.12015/issn.1674-8034.2025.05.018.
[33]
GAO X, TANG W J, WANG X, et al. Changes in relaxation value and cerebral blood flow observed in rat brain with delivery of pure oxygen under 7.0T[J]. Chinese Journal of Magnetic Resonance Imaging, 2010, 1(6): 459-464. DOI: 10.3969/j.issn.1674-8034.2010.06.013.
[34]
BANASIAK K J, XIA Y, HADDAD G G. Mechanisms underlying hypoxia-induced neuronal apoptosis[J]. Prog Neurobiol, 2000, 62(3): 215-249. DOI: 10.1016/s0301-0082(00)00011-3.
[35]
MAIUOLO J, GLIOZZI M, MUSOLINO V, et al. From Metabolic Syndrome to Neurological Diseases: Role of Autophagy[J/OL]. Front Cell Dev Biol, 2021, 9: 651021 [2025-10-14]. https://pmc.ncbi.nlm.nih.gov/articles/PMC8017166. DOI: 10.3389/fcell.2021.651021.
[36]
YUAN J J, WU D, WANG W W, et al. A prospective randomized controlled study on mouse nerve growth factor in the treatment of global developmental delay in children[J]. Chinese Journal of Contemporary Pediatrics, 2021, 23(8): 786-790. DOI: 10.7499/j.issn.1008-8830.2106042.
[37]
LU N, LI C M, LI S H, et al. Quantitative investigation of global volumetry and relaxometry of the brain in Parkinson's disease patients using synthetic MRI[J]. Chinese Journal of Magnetic Resonance Imaging, 2021, 12(4): 1-5, 29. DOI: 10.12015/issn.1674-8034.2021.04.001.
[38]
HALVAGAL M S, ZENKE F. The combination of Hebbian and predictive plasticity learns invariant object representations in deep sensory networks[J]. Nat Neurosci, 2023, 26(11): 1906-1915. DOI: 10.1038/s41593-023-01460-y.
[39]
FINE J M, HAYDEN B Y. The whole prefrontal cortex is premotor cortex[J/OL]. Philos Trans R Soc Lond B Biol Sci, 2022, 377(1844): 20200524 [2025-07-03]. https://pubmed.ncbi.nlm.nih.gov/34957853/. DOI: 10.1098/rstb.2020.0524.
[40]
LIU D, YU H, CHEN B, et al. A Study on the Developmental Characteristics of Children with Language Delay, Global Developmental Delay, and Autism[J]. Maternal and Child Health Care of China, 2024, 39: 250-253. DOI: 10.19829/j.zgfybj.issn.1001-4411.2024.02.016.
[41]
CHU M, JIANG D, LI D, et al. Atrophy network mapping of clinical subtypes and main symptoms in frontotemporal dementia[J]. Brain, 2024, 147(9): 3048-3058. DOI: 10.1093/brain/awae067.
[42]
HUANG H Y, WANG J, WU J T, et al. A near-infrared spectroscopy study of brain resting state functional connectivity features of frontotemporal lobes in children with autism spectrum disorder[J]. Chinese Journal of Nervous and Mental Diseases, 2023, 49: 734-739. DOI: 10.3969/j.issn.1002-0152.2023.12.005.
[43]
ABRAMS D A, LYNCH C J, CHENG K M, et al. Underconnectivity between voice-selective cortex and reward circuitry in children with autism[J]. Proc Natl Acad Sci U S A, 2013, 110(29): 12060-12065. DOI: 10.1073/pnas.1302982110.
[44]
SILETTI K, HODGE R, MOSSI ALBIACH A, et al. Transcriptomic diversity of cell types across the adult human brain[J/OL]. Science, 2023, 382(6667): eadd7046 [2025-06-12]. https://pubmed.ncbi.nlm.nih.gov/37824663. DOI: 10.1126/science.add7046.
[45]
PAPEO L, AGOSTINI B, LINGNAU A. The Large-Scale Organization of Gestures and Words in the Middle Temporal Gyrus[J]. J Neurosci, 2019, 39(30): 5966-5974. DOI: 10.1523/jneurosci.2668-18.2019.
[46]
DORICCHI F, LASAPONARA S, PAZZAGLIA M, et al. Left and right temporal-parietal junctions (TPJs) as "match/mismatch" hedonic machines: A unifying account of TPJ function[J]. Phys Life Rev, 2022, 42: 56-92. DOI: 10.1016/j.plrev.2022.07.001.
[47]
D'ALBIS M A, GUEVARA P, GUEVARA M, et al. Local structural connectivity is associated with social cognition in autism spectrum disorder[J]. Brain, 2018, 141(12): 3472-3481. DOI: 10.1093/brain/awy275.
[48]
REDCAY E. The superior temporal sulcus performs a common function for social and speech perception: implications for the emergence of autism[J]. Neurosci Biobehav Rev, 2008, 32(1): 123-142. DOI: 10.1016/j.neubiorev.2007.06.004.
[49]
BI Y, WANG X, CARAMAZZA A. Object Domain and Modality in the Ventral Visual Pathway[J]. Trends Cogn Sci, 2016, 20(4): 282-290. DOI: 10.1016/j.tics.2016.02.002.
[50]
LU X, ZHANG J F, GU F, et al. Altered task modulation of global signal topography in the default-mode network of unmedicated major depressive disorder[J]. J Affect Disord, 2022, 297: 53-61. DOI: 10.1016/j.jad.2021.09.093.
[51]
LOMBARDO M V, EYLER L, MOORE A, et al. Default mode-visual network hypoconnectivity in an autism subtype with pronounced social visual engagement difficulties[J/OL]. Elife, 2019, 8 [2025-06-12]. https://pmc.ncbi.nlm.nih.gov/articles/PMC6917498. DOI: 10.7554/eLife.47427.

PREV Glymphatic system alterations and cognitive-emotional impairment in bilateral sudden sensorineural hearing loss: A structural MRI study
NEXT Correlation study between brain structural changes and cognitive function in patients with Alzheimer<sup><sup>,</sup></sup>s disease
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn