Share:
Share this content in WeChat
X
Clinical Article
Correlation study between brain structural changes and cognitive function in patients with Alzheimer's disease
TIAN Xin  FAN Lihua  WEI Wei  JIANG Mao  YU Nan  ZHOU Feng  ZHENG Yunsong  CHEN Jing 

DOI:10.12015/issn.1674-8034.2025.12.007.


[Abstract] Objective To investigate the alterations in gray matter structure and their correlation with cognitive function in patients with Alzheimer's disease (AD) using voxel-based morphometry (VBM) and surface-based morphometry (SBM).Materials and Methods Sixty-one participants from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database were enrolled, comprising 32 AD patients and 29 healthy controls (HC). Morphological metrics, including gray matter volume, cortical thickness, and cortical complexity (local gyrification index, fractal dimension, and sulcal depth), were derived using VBM and SBM pipelines. Regional values from brain areas exhibiting significant intergroup differences were extracted and correlated with cognitive scale scores using Pearson's analysis.Results Whole-brain structural analysis indicated that the AD group had significantly lower total gray matter volume (P = 0.021) and higher cerebrospinal fluid volume (P = 0.011) than the HC group. VBM identified gray matter reduction in the AD group within the left hippocampus, right parahippocampal gyrus, bilateral middle and inferior temporal gyri, and the left mid-cingulate gyrus (voxel-level FWE-corrected P < 0.001). SBM revealed statistically significant group differences in cortical thickness and local gyrification index (cluster-level FWE-corrected P < 0.05). Cortical thinning was observed in the bilateral inferior parietal lobules and bilateral middle, superior, and inferior temporal gyri, whereas the local gyrification index was elevated in the left middle and inferior temporal gyri. No significant between-group differences were detected in fractal dimension or sulcal depth (FWE-uncorrected P > 0.05). Cognitive assessment confirmed marked differences in Mini-Mental State Examination (MMSE) and Clinical Dementia Rating (CDR) scores (P < 0.001). In the AD group, MMSE scores correlated positively with left hippocampal volume, right parahippocampal gyrus volume, and cortical thickness of the right precuneus and left middle temporal gyrus. Conversely, CDR scores were negatively correlated with volumes of the left hippocampus and right parahippocampal gyrus.Conclusions VBM and SBM analyses effectively identified characteristic gray matter atrophy in the limbic system and association cortices of Alzheimer's disease patients, which was significantly correlated with the severity of cognitive impairment. Furthermore, the study revealed an increased local gyrification index in the left temporal lobe. This finding deviates from the conventional model of linear degenerative changes, suggesting that the local gyrification index holds promise as a novel neuroimaging biomarker for detecting microstructural alterations in AD.
[Keywords] Alzheimer's disease;morphometric analysis;magnetic resonance imaging;brain structure alterations;cortical complexity;cognitive function

TIAN Xin1   FAN Lihua1   WEI Wei1   JIANG Mao2   YU Nan1, 2   ZHOU Feng3   ZHENG Yunsong1, 2   CHEN Jing1*  

1 Department of Medical Imaging, Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, Xianyang 712000, China

2 School of Medical Technology, Shaanxi University of Traditional Chinese Medicine, Xianyang 712046, China

3 Department of Scientific Research, Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, Xianyang 712000, China

Corresponding author: CHEN J, E-mail: 345717558@qq.com

Conflicts of interest   None.

Received  2025-10-15
Accepted  2025-12-05
DOI: 10.12015/issn.1674-8034.2025.12.007
DOI:10.12015/issn.1674-8034.2025.12.007.

[1]
MADNANI R S. Alzheimer's disease: a mini-review for the clinician[J/OL]. Front Neurol, 2023, 14: 1178588 [2025-10-14]. https://pubmed.ncbi.nlm.nih.gov/37426432/. DOI: 10.3389/fneur.2023.1178588.
[2]
CUI X R, LI M P, LEI G X, et al. Differences in cerebral structure among patients with amnestic mild cognitive impairment and patients with Alzheimer's disease[J/OL]. Front Aging Neurosci, 2024, 16: 1453051 [2025-10-14]. https://pubmed.ncbi.nlm.nih.gov/39697482/. DOI: 10.3389/fnagi.2024.1453051.
[3]
FREDERIKSEN K S, GRAMKOW M H, HASSELBALCH S G, et al. Anti-amyloid antibodies for the treatment of early-stage Alzheimer's disease[J/OL]. Ugeskr Laeger, 2025, 187(35): V03250217 [2025-10-14]. https://pubmed.ncbi.nlm.nih.gov/40910390/. DOI: 10.61409/V03250217.
[4]
ZHENG M H, WANG S M, JIA J P. Potential diagnostic markers in Alzheimer's disease: current perspectives and future directions[J/OL]. Neurodegener Dis Manag, 2025: 1-13 [2025-10-14]. https://pubmed.ncbi.nlm.nih.gov/40911035/. DOI: 10.1080/17582024.2025.2554515.
[5]
VAN DYCK C H, SWANSON C J, AISEN P, et al. Lecanemab in early Alzheimer's disease[J]. N Engl J Med, 2023, 388(1): 9-21. DOI: 10.1056/nejmoa2212948.
[6]
TAE W S, HAM B J, PYUN S B, et al. Current clinical applications of structural MRI in neurological disorders[J]. J Clin Neurol, 2025, 21(4): 277-293. DOI: 10.3988/jcn.2025.0185.
[7]
RAHMAN M, TABASSUM A, SULTANA S, et al. Epidemiology and risk factors of Alzheimer's disease and related dementias in South and Southeast Asia: a systematic review and meta-analysis protocol[J/OL]. BMJ Open, 2025, 15(8): e105955 [2025-10-14]. https://pubmed.ncbi.nlm.nih.gov/40840983/. DOI: 10.1136/bmjopen-2025-105955.
[8]
HUANG H D, ZHENG S Q, YANG Z X, et al. Voxel-based morphometry and a deep learning model for the diagnosis of early Alzheimer's disease based on cerebral gray matter changes[J]. Cereb Cortex, 2023, 33(3): 754-763. DOI: 10.1093/cercor/bhac099.
[9]
KOBAYASHI R, HAYASHI H, KAWAKATSU S, et al. Comparing medial temporal atrophy between early-onset semantic dementia and early-onset Alzheimer's disease using voxel-based morphometry: a multicenter MRI study[J]. Curr Alzheimer Res, 2022, 19(7): 503-510. DOI: 10.2174/1567205019666220820145429.
[10]
MATSUSUE E, INOUE C, SHIMODA M, et al. Utility of combining multiple parameters of 123I-IMP SPECT and voxel-based morphometry MRI using a multiparametric scoring system for differentiating dementia with Lewy bodies from Alzheimer's disease[J]. Acta Radiol, 2024, 65(7): 825-834. DOI: 10.1177/02841851241253775.
[11]
HSIAO H T, MA M C, CHANG H I, et al. Cognitive decline related to diet pattern and nutritional adequacy in Alzheimer's disease using surface-based morphometry[J/OL]. Nutrients, 2022, 14(24): 5300 [2025-10-14]. https://pubmed.ncbi.nlm.nih.gov/36558459/. DOI: 10.3390/nu14245300.
[12]
MU S Z, BAO J X, XU H X, et al. Multivariate mediation analysis with voxel-based morphometry revealed the neurodegeneration pathways from genetic variants to Alzheimer's Disease[J/OL]. AMIA Jt Summits Transl Sci Proc, 2024, 2024: 344-353 [2025-10-14]. https://pubmed.ncbi.nlm.nih.gov/38827096/.
[13]
XU Y B, ZHANG Z H, PENG J X, et al. Use of magnetic resonance structural imaging to identify disease progression in patients with mild cognitive impairment: a voxel-based morphometry and surface-based morphometry study[J/OL]. Neuroscience, 2025, 579: 382-389 [2025-10-14]. https://pubmed.ncbi.nlm.nih.gov/40318840/. DOI: 10.1016/j.neuroscience.2025.04.031.
[14]
WANG Y, ZHAO K, ZHU Z L, et al. Altered brain morphometry and structural covariant networks based on cortical thickness in Alzheimer's disease[J]. Chin J Magn Reson Imag, 2024, 15(8): 52-58. DOI: 10.12015/issn.1674-8034.2024.08.008.
[15]
WU Z X, PENG Y, HONG M, et al. Gray matter deterioration pattern during Alzheimer's disease progression: a regions-of-interest based surface morphometry study[J/OL]. Front Aging Neurosci, 2021, 13: 593898 [2025-10-14]. https://pubmed.ncbi.nlm.nih.gov/33613265/. DOI: 10.3389/fnagi.2021.593898.
[16]
MARZI C, SCHEDA R, SALVADORI E, et al. Fractal dimension of the cortical gray matter outweighs other brain MRI features as a predictor of transition to dementia in patients with mild cognitive impairment and leukoaraiosis[J/OL]. Front Hum Neurosci, 2023, 17: 1231513 [2025-10-14]. https://pubmed.ncbi.nlm.nih.gov/37822707/. DOI: 10.3389/fnhum.2023.1231513.
[17]
SHI F, LIU B, ZHOU Y, et al. Hippocampal volume and asymmetry in mild cognitive impairment and Alzheimer's disease: Meta-analyses of MRI studies[J]. Hippocampus, 2009, 19(11): 1055-1064. DOI: 10.1002/hipo.20573.
[18]
FORTIN J P, CULLEN N, SHELINE Y I, et al. Harmonization of cortical thickness measurements across scanners and sites[J/OL]. Neuroimage, 2018, 167: 104-120 [2025-10-14]. https://pubmed.ncbi.nlm.nih.gov/29155184/. DOI: 10.1016/j.neuroimage.2017.11.024.
[19]
JAGUST W. Imaging the evolution and pathophysiology of Alzheimer disease[J]. Nat Rev Neurosci, 2018, 19(11): 687-700. DOI: 10.1038/s41583-018-0067-3.
[20]
THOMPSON P M, HAYASHI K M, DE ZUBICARAY G I, et al. Mapping hippocampal and ventricular change in Alzheimer disease[J]. Neuroimage, 2004, 22(4): 1754-1766. DOI: 10.1016/j.neuroimage.2004.03.040.
[21]
KANTARCI K, SCHWARZ C G, REID R I, et al. White matter integrity determined with diffusion tensor imaging in older adults without dementia: influence of amyloid load and neurodegeneration[J]. JAMA Neurol, 2014, 71(12): 1547-1554. DOI: 10.1001/jamaneurol.2014.1482.
[22]
JACK C R, TWOMEY C K, ZINSMEISTER A R, et al. Anterior temporal lobes and hippocampal formations: normative volumetric measurements from MR images in young adults[J]. Radiology, 1989, 172(2): 549-554. DOI: 10.1148/radiology.172.2.2748838.
[23]
KATABATHULA S, WANG Q Y, XU R. Predict Alzheimer's disease using hippocampus MRI data: a lightweight 3D deep convolutional network model with visual and global shape representations[J/OL]. Alzheimers Res Ther, 2021, 13(1): 104 [2025-10-14]. https://pubmed.ncbi.nlm.nih.gov/34030743/. DOI: 10.1186/s13195-021-00837-0.
[24]
SAHA C D, FIGLEY C R, DASTGHEIB Z, et al. Gray and white matter voxel-based morphometry of Alzheimer's disease with and without significant cerebrovascular pathologies[J/OL]. Neurosci Insights, 2024, 19: 26331055231225657 [2025-10-14]. https://pubmed.ncbi.nlm.nih.gov/38304550/. DOI: 10.1177/26331055231225657.
[25]
SATO R, KUDO K, UDO N, et al. A diagnostic index based on quantitative susceptibility mapping and voxel-based morphometry may improve early diagnosis of Alzheimer's disease[J]. Eur Radiol, 2022, 32(7): 4479-4488. DOI: 10.1007/s00330-022-08547-3.
[26]
WHITWELL J L, JACK C R. Comparisons between Alzheimer disease, frontotemporal lobar degeneration, and normal aging with brain mapping[J]. Top Magn Reson Imaging, 2005, 16(6): 409-425. DOI: 10.1097/01.rmr.0000245457.98029.e1.
[27]
LAI H Y, MUSRAH A T S, YAP K H, et al. Visuospatial impairment and resting-state network correlations in Alzheimer's disease: a systematic review[J/OL]. Behav Brain Res, 2025, 495: 115770 [2025-10-14]. https://pubmed.ncbi.nlm.nih.gov/40774645/. DOI: 10.1016/j.bbr.2025.115770.
[28]
SAKURAI K, KANEDA D, MORIMOTO S, et al. Voxel-based and surface-based morphometry analysis in patients with pathologically confirmed argyrophilic grain disease and Alzheimer's disease[J]. J Alzheimers Dis, 2023, 93(1): 379-387. DOI: 10.3233/JAD-230068.
[29]
COLEMAN M M, KEITH C M, WILHELMSEN K, et al. Surface-based correlates of cognition along the Alzheimer's continuum in a memory clinic population[J/OL]. Front Neurol, 2023, 14: 1214083 [2025-10-14]. https://pubmed.ncbi.nlm.nih.gov/37731852/. DOI: 10.3389/fneur.2023.1214083.
[30]
NHO K, RISACHER S L, CRANE P K, et al. Voxel and surface-based topography of memory and executive deficits in mild cognitive impairment and Alzheimer's disease[J]. Brain Imaging Behav, 2012, 6(4): 551-567. DOI: 10.1007/s11682-012-9203-2.
[31]
LI Y N, TONG Y H, LIANG W Z, et al. A longitudinal study on the intervention of voroxetine on the whole cerebral cortex structure in patients with depression based on surface morphometry[J]. Chinese Journal of Psychiatry, 2025, 58(5): 347-355. DOI: 10.3760/cma.j.cn113661-20240516-00149.
[32]
CHEN L A, ZHOU X, QIAO Y N, et al. The impact of Alzheimer's disease on cortical complexity and its underlying biological mechanisms[J/OL]. Brain Res Bull, 2025, 225: 111320 [2025-10-14]. https://pubmed.ncbi.nlm.nih.gov/40189107/. DOI: 10.1016/j.brainresbull.2025.111320.
[33]
SIM Y, SEO C, LEE Y G, et al. Local gyrification index and sulcal depth as imaging markers of cognitive decline in Alzheimer's disease[J/OL]. Front Aging Neurosci, 2025, 17: 1635861 [2025-10-14]. https://pubmed.ncbi.nlm.nih.gov/40873932/. DOI: 10.3389/fnagi.2025.1635861.
[34]
BACHMANN T, SCHROETER M L, CHEN K W, et al. Longitudinal changes in surface based brain morphometry measures in amnestic mild cognitive impairment and Alzheimer's Disease[J/OL]. Neuroimage Clin, 2023, 38: 103371 [2025-10-14]. https://pubmed.ncbi.nlm.nih.gov/36924681/. DOI: 10.1016/j.nicl.2023.103371.
[35]
GONZÁLEZ-REYES R E, NAVA-MESA M O, VARGAS-SÁNCHEZ K, et al. Involvement of astrocytes in Alzheimer's disease from a neuroinflammatory and oxidative stress perspective[J/OL]. Front Mol Neurosci, 2017, 10: 427 [2025-10-14]. https://pubmed.ncbi.nlm.nih.gov/29311817/. DOI: 10.3389/fnmol.2017.00427.
[36]
BRUNO M, BONOMI C G, RICCI F, et al. Blood-brain barrier permeability is associated with different neuroinflammatory profiles in Alzheimer's disease[J/OL]. Eur J Neurol, 2024, 31(1): e16095 [2025-10-14]. https://pubmed.ncbi.nlm.nih.gov/37823706/. DOI: 10.1111/ene.16095.
[37]
ZIUKELIS E T, MAK E, DOUNAVI M E, et al. Fractal dimension of the brain in neurodegenerative disease and dementia: a systematic review[J/OL]. Ageing Res Rev, 2022, 79: 101651 [2025-10-14]. https://pubmed.ncbi.nlm.nih.gov/35643264/. DOI: 10.1016/j.arr.2022.101651.
[38]
NÚÑEZ C, CALLÉN A, LOMBARDINI F, et al. Different cortical gyrification patterns in Alzheimer's disease and impact on memory performance[J]. Ann Neurol, 2020, 88(1): 67-80. DOI: 10.1002/ana.25741.
[39]
CHEN G S, MCKAY N S, GORDON B A, et al. Baseline and longitudinal changes in cortical thickness and hippocampal volume predict cognitive decline[J]. J Alzheimers Dis, 2025, 106(4): 1452-1462. DOI: 10.1177/13872877251352202.
[40]
MIGLIACCIO R, AGOSTA F, POSSIN K L, et al. Mapping the progression of atrophy in early- and late-onset Alzheimer's disease[J]. J Alzheimers Dis, 2015, 46(2): 351-364. DOI: 10.3233/JAD-142292.
[41]
KEITH C M, HAUT M W, WILHELMSEN K, et al. Frontal and temporal lobe correlates of verbal learning and memory in aMCI and suspected Alzheimer's disease dementia[J]. Neuropsychol Dev Cogn B Aging Neuropsychol Cogn, 2023, 30(6): 923-939. DOI: 10.1080/13825585.2022.2144618.

PREV Quantitative study on the brain of children with global developmental delay using synthetic MRI techniques
NEXT Non-invasive lateralization of refractory temporal lobe epilepsy using combined hippocampal head glutamate excitotoxicity and structural atrophy based on multimodal MRI
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn