Share:
Share this content in WeChat
X
Clinical Article
Study of changes in brain functional networks in patients with cerebral small vessel disease under different burdens based on rs-fMRI and graph theory analysis
TAN Xiang  YANG Fan  YU Ruiyi  LI Wenfeng  NAN Yan  ZHANG Lin 

DOI:10.12015/issn.1674-8034.2025.12.009.


[Abstract] Objective This study combines resting-state functional magnetic resonance imaging (rs-fMRI) with traditional graph theory analysis methods to see how brain functional network indicators change in patients with different levels of cerebral small vessel disease (CSVD) and to study how this relates to cognitive function.Materials and Methods There were altogether 23 cases of patients with mild CSVD burden (CSVD-m), 22 cases of patients with moderate to severe CSVD burden (CSVD-s), and 21 cases of healthy controls (HC). All rs-fMRI and related cranial MRI imaging data, clinical and laboratory data, and related cognitive scale scores were taken. The differences in functional network between the three groups were analyzed, and the correlation between the difference data and brain regions and cognitive scale scores were analyzed.Results For clinical results, the Montreal Cognitive Assessment (MoCA) result in the CSVD-s group were lower than those in the HC group (P < 0.05). For global results, the CSVD-s group had lower global efficiency (Eg) and higher shortest path length (Lp) and nodal clustering coefficient (Cp) compared with the HC group; the CSVD-s group had higher Lp compared with the CSVD-m group (P < 0.05). For local results, compared with the HC group, the brain regions with reduced nodal efficiency (NE) in the CSVD-s group were in the right superior frontal gyrus orbital region and the left inferior parietal lobule, and the brain region with increased nodal clustering coefficient (NCp) in the CSVD-s group was in the left superior frontal gyrus orbital region. In the CSVD-s group, the brain region with decreased NE was in the left inferior parietal lobule compared with the CSVD-m group (both P < 0.05). For cognitive correlation analysis, in the left subparietal lobule, NE was positively correlated with MoCA scores (r = 0.339, P < 0.05).Conclusions Both global and local network results were changed in patients with different loads of CSVD, which showed that the brain's infomation-processing ability was reduced to different levels, and there was a compensatory system. Moreover, some of the changes in results were correlated with cognitive fuction, which offered a deeper understanding of the pathophysiological mechanisms behind the differences in their clinical symptoms on an imaging basis.
[Keywords] cerebral small vessel diseases;resting-state functional magnetic resonance imaging;magnetic resonance imaging;graph theory;functional brain network;cognitive impairent

TAN Xiang   YANG Fan   YU Ruiyi   LI Wenfeng   NAN Yan   ZHANG Lin*  

Medical Image Center, the First Affiliated Hospital of Shihezi University, Shihezi 832000, China

Corresponding author: ZHANG L, E-mail: zhang123ct@sina.com

Conflicts of interest   None.

Received  2025-08-07
Accepted  2025-10-13
DOI: 10.12015/issn.1674-8034.2025.12.009
DOI:10.12015/issn.1674-8034.2025.12.009.

[1]
MARKUS H S, JOUTEL A. The pathogenesis of cerebral small vessel disease and vascular cognitive impairment[J]. Physiol Rev, 2025, 105(3): 1075-1171. DOI: 10.1152/physrev.00028.2024.
[2]
HAINSWORTH A H, MARKUS H S, SCHNEIDER J A. Cerebral Small Vessel Disease, Hypertension, and Vascular Contributions to Cognitive Impairment and Dementia[J]. Hypertension, 2024, 81(1): 75-86. DOI: 10.1161/hypertensionaha.123.19943.
[3]
WARDLAW J M, SMITH C, DICHGANS M. Small vessel disease: mechanisms and clinical implications[J]. Lancet Neurol, 2019, 18(7): 684-696. DOI: 10.1016/s1474-4422(19)30079-1.
[4]
DUERING M, BIESSELS G J, BRODTMANN A, et al. Neuroimaging standards for research into small vessel disease-advances since 2013[J]. Lancet Neurol, 2023, 22(7): 602-618. DOI: 10.1016/s1474-4422(23)00131-x.
[5]
HUIJTS M, DUITS A, VAN OOSTENBRUGGE R J, et al. Accumulation of MRI Markers of Cerebral Small Vessel Disease is Associated with Decreased Cognitive Function. A Study in First-Ever Lacunar Stroke and Hypertensive Patients[J/OL]. Front Aging Neurosci, 2013, 5: 72 [2025-08-07]. https://doi.org/10.3389/fnagi.2013.00072. DOI: 10.3389/fnagi.2013.00072.
[6]
CHEN X, WANG J, SHAN Y, et al. Cerebral small vessel disease: neuroimaging markers and clinical implication[J]. J Neurol, 2019, 266(10): 2347-2362. DOI: 10.1007/s00415-018-9077-3.
[7]
KLARENBEEK P, VAN OOSTENBRUGGE R J, ROUHL R P, et al. Ambulatory blood pressure in patients with lacunar stroke: association with total MRI burden of cerebral small vessel disease[J]. Stroke, 2013, 44(11): 2995-2999. DOI: 10.1161/strokeaha.113.002545.
[8]
FAN Y, XU Y, SHEN M, et al. Total Cerebral Small Vessel Disease Burden on MRI Correlates With Cognitive Impairment in Outpatients With Amnestic Disorders[J/OL]. Front Neurol, 2021, 12: 747115 [2025-08-07]. https://doi.org/10.3389/fneur.2021.747115. DOI: 10.3389/fneur.2021.747115.
[9]
LIU W, FU Z, GUO C, et al. Functional network hubs in vestibular migraine: a neuroimaging perspective[J]. Neurol Sci, 2025, 46(7): 3201-3211. DOI: 10.1007/s10072-025-08106-w.
[10]
BASSETT D S, BULLMORE E T. Human brain networks in health and disease[J]. Curr Opin Neurol, 2009, 22(4): 340-347. DOI: 10.1097/WCO.0b013e32832d93dd.
[11]
PAN H, LIU C R, HU A L, et al. A study on the brain functional network of adult epilepsy comorbidity depression[J]. Chin J Magn Reson Imaging, 2024, 15(6): 24-30. DOI: 10.12015/issn.1674-8034.2024.06.003.
[12]
LIN X B, CHEN K K, SUN Y B, et al. Analysis of topological properties of brain functional networks in adolescents with non-suicidal self-injury based on graph theory[J]. Chin J Magn Reson Imaging, 2024, 15(12): 65-72. DOI: 10.12015/issn.1674-8034.2024.12.010.
[13]
WU X Y, YANG L, YU L, et al. Analysis of characteristics of brain functional network in Crohn's disease patients with chronic abdominal pain based on rs-fMRI graph theory[J]. Chin J Magn Reson Imaging, 2025, 16(4): 12-18, 113. DOI: 10.12015/issn.1674-8034.2025.04.003.
[14]
NASREDDINE Z S, PHILLIPS N A, BÉDIRIAN V, et al. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment[J]. J Am Geriatr Soc, 2005, 53(4): 695-699. DOI: 10.1111/j.1532-5415.2005.53221.x.
[15]
RORDEN C, KARNATH H O, BONILHA L. Improving lesion-symptom mapping[J]. J Cogn Neurosci, 2007, 19(7): 1081-1088. DOI: 10.1162/jocn.2007.19.7.1081.
[16]
WANG J, WANG X, XIA M, et al. GRETNA: a graph theoretical network analysis toolbox for imaging connectomics[J/OL]. Front Hum Neurosci, 2015, 9: 386 [2025-08-07]. https://doi.org/10.3389/fnhum.2015.00386. DOI: 10.3389/fnhum.2015.00386.
[17]
ZHANG L, WU H, ZHANG A, et al. Aberrant brain network topology in the frontoparietal-limbic circuit in bipolar disorder: a graph-theory study[J]. Eur Arch Psychiatry Clin Neurosci, 2021, 271(7): 1379-1391. DOI: 10.1007/s00406-020-01219-7.
[18]
DAO E, TAM R, HSIUNG G R, et al. Exploring the Contribution of Myelin Content in Normal Appearing White Matter to Cognitive Outcomes in Cerebral Small Vessel Disease[J]. J Alzheimers Dis, 2021, 80(1): 91-101. DOI: 10.3233/jad-201134.
[19]
SORTE SILVA N C BOA, BALBIM G M, STEIN R G, et al. Physical activity may protect myelin via modulation of high-density lipoprotein[J/OL]. Alzheimers Dement, 2025, 21(2): e14599 [2025-08-07]. https://doi.org/10.1002/alz.14599. DOI: 10.1002/alz.14599.
[20]
SPORNS O. The human connectome: a complex network[J]. Ann N Y Acad Sci, 2011, 1224: 109-125. DOI: 10.1111/j.1749-6632.2010.05888.x.
[21]
WANG Y, LIU X, HU Y, et al. Impaired functional network properties contribute to white matter hyperintensity related cognitive decline in patients with cerebral small vessel disease[J/OL]. BMC Med Imaging, 2022, 22(1): 40 [2025-08-07]. https://doi.org/10.1186/s12880-022-00769-7. DOI: 10.1186/s12880-022-00769-7.
[22]
MOHAMMADIAN F, ZARE SADEGHI A, NOROOZIAN M, et al. Quantitative Assessment of Resting-State Functional Connectivity MRI to Differentiate Amnestic Mild Cognitive Impairment, Late-Onset Alzheimer's Disease From Normal Subjects[J]. J Magn Reson Imaging, 2023, 57(6): 1702-1712. DOI: 10.1002/jmri.28469.
[23]
LEE D A, LEE H J, KIM S E, et al. Brain networks and epilepsy development in patients with Alzheimer disease[J]. Brain Behav, 2023, 13(8): e3152 [2025-08-07]. https://doi.org/10.1002/brb3.3152. DOI: 10.1002/brb3.3152.
[24]
XIN H, WEN H, FENG M, et al. Disrupted topological organization of resting-state functional brain networks in cerebral small vessel disease[J]. Hum Brain Mapp, 2022, 43(8): 2607-2620. DOI: 10.1002/hbm.25808.
[25]
CHEN X, PENG Y, ZHENG Q, et al. The different damage patterns of short-, middle- and long-range connections between patients with relapse-remitting multiple sclerosis and neuromyelitis optica spectrum disorder[J/OL]. Front Immunol, 2022, 13: 1007335 [2025-08-07]. https://doi.org/10.3389/fimmu.2022.1007335. DOI: 10.3389/fimmu.2022.1007335.
[26]
WANG J, TAO A, ANDERSON W S, et al. Mesoscopic physiological interactions in the human brain reveal small-world properties[J/OL]. Cell Rep, 2021, 36(8): 109585 [2025-08-07]. https://doi.org/10.1016/j.celrep.2021.109585. DOI: 10.1016/j.celrep.2021.109585.
[27]
BOYANG Z, YANG Z, LIYUAN F, et al. A neural regulation mechanism of head electroacupuncture on brain network of patients with stroke related sleep disorders[J]. J Tradit Chin Med, 2024, 44(6): 1268-1276. DOI: 10.19852/j.cnki.jtcm.2024.06.011.
[28]
ZHAO Q, SANG X, METMER H, et al. Functional segregation of executive control network and frontoparietal network in Alzheimer's disease[J]. Cortex, 2019, 120: 36-48. DOI: 10.1016/j.cortex.2019.04.026.
[29]
ZHANG Y P, HONG G H, ZHANG C Y. Brain Network Changes in Lumbar Disc Herniation Induced Chronic Nerve Roots Compression Syndromes[J/OL]. Neural Plast, 2022, 2022: 7912410 [2025-08-07]. https://doi.org/10.1155/2022/7912410. DOI: 10.1155/2022/7912410.
[30]
ZHONG J L, JING X S, LIANG Y, et al. The application value of brain functional network topology properties in evaluating tDCS in improving cognitive impairment after ischemic stroke[J]. Chin J Magn Reson Imaging, 2024, 15(11): 6-11. DOI: 10.12015/issn.1674-8034.2024.11.002.
[31]
WANG W W, HUANG J, CHENG R T, et al. A study on differences of regional homogeneity on brain function between cerebral small vessel disease patients with and without cognitive impairment[J]. Chin J Magn Reson Imaging, 2025, 16(6): 48-54. DOI: 10.12015/issn.1674-8034.2025.06.007.
[32]
BANGE M, HELMICH R C G, WAGLE SHUKLA A A, et al. Non-invasive brain stimulation to modulate neural activity in Parkinson's disease[J/OL]. NPJ Parkinsons Dis, 2025, 11(1): 68 [2025-08-07]. https://doi.org/10.1038/s41531-025-00908-1. DOI: 10.1038/s41531-025-00908-1.
[33]
JIA X, WANG Z, HUANG F, et al. A comparison of the Mini-Mental State Examination (MMSE) with the Montreal Cognitive Assessment (MoCA) for mild cognitive impairment screening in Chinese middle-aged and older population: a cross-sectional study[J/OL]. BMC Psychiatry, 2021, 21(1): 485 [2025-08-07]. https://doi.org/10.1186/s12888-021-03495-6. DOI: 10.1186/s12888-021-03495-6.
[34]
KANG J M, CHO Y S, PARK S, et al. Montreal cognitive assessment reflects cognitive reserve[J/OL]. BMC Geriatr, 2018, 18(1): 261 [2025-08-07]. https://doi.org/10.1186/s12877-018-0951-8. DOI: 10.1186/s12877-018-0951-8.
[35]
CRUZAT J, HERZOG R, PRADO P, et al. Temporal Irreversibility of Large-Scale Brain Dynamics in Alzheimer's Disease[J]. J Neurosci, 2023, 43(9): 1643-1656. DOI: 10.1523/jneurosci.1312-22.2022.
[36]
PASI M, SUGITA L, XIONG L, et al. Association of Cerebral Small Vessel Disease and Cognitive Decline After Intracerebral Hemorrhage[J/OL]. Neurology, 2021, 96(2): e182-e192 [2025-08-07]. https://doi.org/10.1212/wnl.0000000000011050. DOI: 10.1212/wnl.0000000000011050.

PREV Non-invasive lateralization of refractory temporal lobe epilepsy using combined hippocampal head glutamate excitotoxicity and structural atrophy based on multimodal MRI
NEXT Application of MUSE-DWI combined with amide proton transfer quantitative imaging in evaluating the consistency of meningiomas
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn