Share:
Share this content in WeChat
X
Clinical Article
Study on the application of a combined model based on quantitative magnetic resonance parameters and serological indicators for evaluating the activity of Graves's ophthalmopathy
LIU Junhong  SHENG Jiaxi  ZHAO Yang  ZHANG Houning 

DOI:10.12015/issn.1674-8034.2025.12.012.


[Abstract] Objective To explore the value of orbital parameters combined with serological parameters in the diagnosis of Graves's orbitopathy (GO) activity by quantitative analysis.Materials and Methods A retrospective collection of 47 patients diagnosed with GO who visited the Endocrinology Department of North China University of Science and Technology Affiliated Hospital from January 2024 to February 2025 was conducted. Patients were divided into active and inactive groups based on Clinical Activity Score (CAS), and a control group consisting of 15 healthy individuals was also collected. All subjects were examined by MRI and serology. The maximal diameter, maximal cross-sectional area, T2 relaxation time (T2RT) and exophthalmos of each extraocular muscle of the three groups were measured respectively, and the clinical data of the three groups were collected. The parameters were statistically analyzed by SPSS 27.0 software, and the parameters with statistical differences were quantified by binary logistic regression combined with MRI. The receiver operating characteristics (ROC) curve was used to evaluate the predictive efficacy of quantitative parameters of extraocular muscles on GO activity, and the area under the curve (AUC) was compared by DeLong method. Spearman's correlation analysis was used to analyze the relationship between imaging parameters and CAS score.Results The maximal diameter, maximal cross-sectional area, T2RTmax, T2RTmean and exophthalmos in the activity group were statistically significant (P < 0.05), and the quantitative parameters in the activity group were significantly increased. ROC curve analysis shows that TRAb, T2RTmax and exophthalmos have the best diagnostic efficacy, which is higher than the single diagnostic value of the three groups. The AUC value is 0.905, the sensitivity is 91.7%, the specificity is 81.0%, and the cutoff value is 0.44. The maximumcross-sectional area (r = 0.73, P < 0.05), diameter (r = 0.70, P < 0.05), T2RT (r = 0.83, P < 0.05) and exophthalmos (r = 0.75, P < 0.05) were positively correlated with CAS score.Conclusions Multi-parameters of magnetic resonance imaging and serological indexes can evaluate the activity of GO, and the combination of them can improve the efficacy of clinical diagnosis of GO.
[Keywords] T2 mapping;Graves's orbitopathy;quantitative parameter;serological index;magnetic resonance imaging

LIU Junhong1   SHENG Jiaxi2   ZHAO Yang3   ZHANG Houning1*  

1 Department of Medical Imaging, Affiliated Hospital of North China University of Science and Technology, Tangshan 063000, China

2 Department of Endocrinology, Affiliated Hospital of North China University of Science and Technology, Tangshan 063000, China

3 Department of Radiology, Tangshan Maternal and Child Health Hospital, Tangshan 063000, China

Corresponding author: ZHANG H N, E-mail: xiaohan1981001@163.com

Conflicts of interest   None.

Received  2025-09-03
Accepted  2025-11-06
DOI: 10.12015/issn.1674-8034.2025.12.012
DOI:10.12015/issn.1674-8034.2025.12.012.

[1]
BARTALENA L, KAHALY G J, BALDESCHI L, et al. The 2021 European Group on Graves' orbitopathy (EUGOGO) clinical practice guidelines for the medical management of Graves' orbitopathy[J/OL]. Eur J Endocrinol, 2021, 185(4): G43-G67 [2025-09-02]. https://pubmed.ncbi.nlm.nih.gov/34297684/. DOI: 10.1530/EJE-21-0479.
[2]
DEBNAM J M, KOKA K, ESMAELI B. Extrathyroidal manifestations of thyroid disease: Graves eye disease[J]. Neuroimaging Clin N Am, 2021, 31(3): 367-378. DOI: 10.1016/j.nic.2021.04.006.
[3]
KAHALY G J. Management of Graves thyroidal and extrathyroidal disease: an update[J]. J Clin Endocrinol Metab, 2020, 105(12): 3704-3720. DOI: 10.1210/clinem/dgaa646.
[4]
LIU X T, SU Y, JIANG M D, et al. Application of magnetic resonance imaging in the evaluation of disease activity in Graves' ophthalmopathy[J]. Endocr Pract, 2021, 27(3): 198-205. DOI: 10.1016/j.eprac.2020.09.008.
[5]
ZHANG Y C, BI Q, GONG X R, et al. Research progress of magnetic resonance imaging in the assessment of TAO activity[J]. Chin J Magn Reson Imag, 2023, 14(9): 125-130. DOI: 10.12015/issn.1674-8034.2023.09.023.
[6]
SONG C, LUO Y S, YU G F, et al. Current insights of applying MRI in Graves' ophthalmopathy[J/OL]. Front Endocrinol (Lausanne), 2022, 13: 991588 [2025-09-02]. https://pubmed.ncbi.nlm.nih.gov/36267571/. DOI: 10.3389/fendo.2022.991588.
[7]
ČIVRNÝ J, KARHANOVÁ M, HÜBNEROVÁ P, et al. MRI in the assessment of thyroid-associated orbitopathy activity[J]. Clin Radiol, 2022, 77(12): 925-934. DOI: 10.1016/j.crad.2022.08.124.
[8]
TRIADYAKSA P, OUDKERK M, SIJENS P E. Cardiac T2 * mapping: Techniques and clinical applications[J]. J Magn Reson Imaging, 2020, 52(5): 1340-1351. DOI: 10.1002/jmri.27023.
[9]
RUSSO F, AMBROSIO L, GIANNARELLI E, et al. Innovative quantitative magnetic resonance tools to detect early intervertebral disc degeneration changes: a systematic review[J]. Spine J, 2023, 23(10): 1435-1450. DOI: 10.1016/j.spinee.2023.05.011.
[10]
KAKIMOTO N, WONGRATWANICH P, SHIMAMOTO H, et al. Comparison of T2 values of the displaced unilateral disc and retrodiscal tissue of temporomandibular joints and their implications[J/OL]. Sci Rep, 2024, 14(1): 1705 [2025-09-02]. https://pubmed.ncbi.nlm.nih.gov/38242921/. DOI: 10.1038/s41598-024-52092-6.
[11]
DAS T, ROOS J C P, PATTERSON A J, et al. T2-relaxation mapping and fat fraction assessment to objectively quantify clinical activity in thyroid eye disease: an initial feasibility study[J]. Eye (Lond), 2019, 33(2): 235-243. DOI: 10.1038/s41433-018-0304-z.
[12]
BARTLEY G B, GORMAN C A. Diagnostic criteria for Graves' ophthalmopathy[J]. Am J Ophthalmol, 1995, 119(6): 792-795. DOI: 10.1016/s0002-9394(14)72787-4.
[13]
HOANG T D, STOCKER D J, CHOU E L, et al. 2022 update on clinical management of Graves disease and thyroid eye disease[J]. Endocrinol Metab Clin North Am, 2022, 51(2): 287-304. DOI: 10.1016/j.ecl.2021.12.004.
[14]
ZHENG J Y, DUAN H H, YOU S F, et al. Research progress on the pathogenesis of Graves' ophthalmopathy: based on immunity, noncoding RNA and exosomes[J/OL]. Front Immunol, 2022, 13: 952954 [2025-09-02]. https://pubmed.ncbi.nlm.nih.gov/36081502/. DOI: 10.3389/fimmu.2022.952954.
[15]
CAO J M, SU Y H, CHEN Z K, et al. The risk factors for Graves' ophthalmopathy[J]. Graefes Arch Clin Exp Ophthalmol, 2022, 260(4): 1043-1054. DOI: 10.1007/s00417-021-05456-x.
[16]
OEVERHAUS M, WINKLER L, STÄHR K, et al. Influence of biological sex, age and smoking on Graves' orbitopathy - a ten-year tertiary referral center analysis[J/OL]. Front Endocrinol (Lausanne), 2023, 14: 1160172 [2025-09-02]. https://pubmed.ncbi.nlm.nih.gov/37082130/. DOI: 10.3389/fendo.2023.1160172.
[17]
YANG Y, CHEN H. Clinical application of thyrotropin receptor antibodies[J]. Horm Metab Res, 2025, 57(2): 79-87. DOI: 10.1055/a-2498-8050.
[18]
KALRA S, SELIM S, SHRESTHA D, et al. Best practices in the laboratory diagnosis, prognostication, prediction, and monitoring of Graves' disease: role of TRAbs[J/OL]. BMC Endocr Disord, 2024, 24(1): 274 [2025-09-02]. https://pubmed.ncbi.nlm.nih.gov/39707289/. DOI: 10.1186/s12902-024-01809-9.
[19]
ALHUBAISH E S, ALIBRAHIM N T, MANSOUR A A. The clinical implications of anti-thyroid peroxidase antibodies in Graves' disease in basrah[J/OL]. Cureus, 2023, 15(3): e36778 [2025-09-02]. https://pubmed.ncbi.nlm.nih.gov/37123800/. DOI: 10.7759/cureus.36778.
[20]
LANZOLLA G, MARINÒ M, MENCONI F. Graves disease: latest understanding of pathogenesis and treatment options[J]. Nat Rev Endocrinol, 2024, 20(11): 647-660. DOI: 10.1038/s41574-024-01016-5.
[21]
WANG M, SHEN Z Y, KAN H, et al. Diagnostic value of quantitative measurement of orbital structure by 3 T MRI in staging of Graves ophthalmopathy[J]. Chin J Magn Reson Imag, 2024, 15(5): 61-67. DOI: 10.12015/issn.1674-8034.2024.05.011.
[22]
HANAI K R, TABUCHI H, NAGASATO D, et al. Automated detection of enlarged extraocular muscle in Graves' ophthalmopathy with computed tomography and deep neural network[J/OL]. Sci Rep, 2022, 12(1): 16036 [2025-09-02]. https://pubmed.ncbi.nlm.nih.gov/36163451/. DOI: 10.1038/s41598-022-20279-4.
[23]
LIXI F, CUCCU A, GIANNACCARE G, et al. Subclinical ocular motility dysfunction and extraocular muscle changes in inactive Graves' orbitopathy[J/OL]. J Pers Med, 2024, 14(8): 848 [2025-09-02]. https://pubmed.ncbi.nlm.nih.gov/39202039/. DOI: 10.3390/jpm14080848.
[24]
LENNERSTRAND G, TIAN S N, ISBERG B, et al. Magnetic resonance imaging and ultrasound measurements of extraocular muscles in thyroid-associated ophthalmopathy at different stages of the disease[J]. Acta Ophthalmol Scand, 2007, 85(2): 192-201. DOI: 10.1111/j.1600-0420.2006.00807.x.
[25]
RANA K, JUNIAT V, PATEL S, et al. Extraocular muscle enlargement[J]. Graefes Arch Clin Exp Ophthalmol, 2022, 260(11): 3419-3435. DOI: 10.1007/s00417-022-05727-1.
[26]
YANG L B, DAI X M, SU J W, et al. Performance of T2 mapping in the staging of Graves' ophthalmopathy based on different region of interest selection methods[J]. Acta Radiol, 2024, 65(7): 835-840. DOI: 10.1177/02841851241248640.
[27]
ZHANG H Y, LU T, LIU Y T, et al. Application of quantitative MRI in thyroid eye disease: imaging techniques and clinical practices[J]. J Magn Reson Imaging, 2024, 60(3): 827-847. DOI: 10.1002/jmri.29114.
[28]
LI D F, GUO X J, ZENG J G, et al. T2 relaxation time in extraocular muscles of patients with mild thyroid- associated ophthalmopathy: comparing T2 mapping with and without fat suppression using different measurement methods[J/OL]. Curr Med Imaging, 2024, 20: e15734056299907 [2025-09-02]. https://pubmed.ncbi.nlm.nih.gov/38639286/. DOI: 10.2174/0115734056299907240404064636.
[29]
LI Z F, LUO Y S, FENG X T, et al. Application of multiparameter quantitative magnetic resonance imaging in the evaluation of Graves' ophthalmopathy[J]. J Magn Reson Imaging, 2023, 58(4): 1279-1289. DOI: 10.1002/jmri.28642.
[30]
YAMAGUCHI S, ODA S, KIDOH M, et al. Cardiac MRI T1 and T2 mapping as a quantitative imaging biomarker in transthyretin amyloid cardiomyopathy[J/OL]. Acad Radiol, 2024, 31(2): 514-522 [2025-09-02]. https://pubmed.ncbi.nlm.nih.gov/37775448/. DOI: 10.1016/j.acra.2023.08.045.
[31]
BURCH H B, PERROS P, BEDNARCZUK T, et al. Management of thyroid eye disease: a consensus statement by the American thyroid association and the European thyroid association[J/OL]. Eur Thyroid J, 2022, 11(6): e220189 [2025-09-02]. https://pubmed.ncbi.nlm.nih.gov/36479875/. DOI: 10.1530/ETJ-22-0189.
[32]
LI D F, WEN W C, LI H B, et al. Clinical study of intravoxel incoherent motion diffusion-weighted imaging and T2 mapping in evaluating the activity of thyroid-associated ophthalmopathy[J]. Chin J Magn Reson Imag, 2021, 12(10): 66-69, 73. DOI: 10.12015/issn.1674-8034.2021.10.015.
[33]
CHENG J Y, ZHANG X Y, LIAN J X, et al. Evaluation of activity of Graves' orbitopathy with multiparameter orbital magnetic resonance imaging (MRI)[J]. Quant Imaging Med Surg, 2023, 13(5): 3040-3049. DOI: 10.21037/qims-22-814.
[34]
WANG L, FAN Y, LONG J, et al. Value of evaluating Graves ophthalmopathy motiliny by MRI T2-mapping[J]. Med J Chin People's Liberation Army, 2024, 49(1): 70-74. DOI: 10.11855/j.issn.0577-7402.1757.2023.0619.
[35]
BARTALENA L, GALLO D, TANDA M L, et al. Thyroid eye disease: epidemiology, natural history, and risk factors[J/OL]. Ophthalmic Plast Reconstr Surg, 2023, 39(6s): S2-S8 [2025-09-02]. https://pubmed.ncbi.nlm.nih.gov/38054980/. DOI: 10.1097/iop.0000000000002467.
[36]
CHEN W, HU H, CHEN H H, et al. Utility of T2 mapping in the staging of thyroid-associated ophthalmopathy: efficiency of region of interest selection methods[J]. Acta Radiol, 2020, 61(11): 1512-1519. DOI: 10.1177/0284185120905032.
[37]
PU X Y, HU H, LU J L, et al. Value of dynamic contrast-enhanced MRI in evaluating the microcirculation of extraocular muscle and stage of thyroid-associated ophthalmopathy[J]. Chin J Magn Reson Imag, 2024, 15(7): 99-104. DOI: 10.12015/issn.1674-8034.2024.07.017.
[38]
ESPOSITO A, FRANCONE M, FALETTI R, et al. Lights and shadows of cardiac magnetic resonance imaging in acute myocarditis[J]. Insights Imaging, 2016, 7(1): 99-110. DOI: 10.1007/s13244-015-0444-7.
[39]
ZHAO S D, SHI S S, YANG W C, et al. RhoA with associated TRAb or FT3 in the diagnosis and prediction of Graves' ophthalmopathy[J/OL]. Dis Markers, 2022, 2022: 8323946 [2025-09-02]. https://pubmed.ncbi.nlm.nih.gov/35937945/. DOI: 10.1155/2022/8323946.
[40]
NAKANO M, KONISHI H, KOSHIBA M. Thyroid-stimulating antibody/thyroid-stimulating hormone receptor antibody ratio as a sensitive screening test for active Graves' orbitopathy[J]. Endocr Pract, 2022, 28(10): 1050-1054. DOI: 10.1016/j.eprac.2022.07.007.

PREV Predictive value of radiomics based on dynamic contrast-enhanced MRI for high-grade gliomas and solitary brain metastases
NEXT Diagnostic value of whole-body magnetic resonance imaging for incidental lesions in postoperative breast cancer patients
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn