Share:
Share this content in WeChat
X
Clinical Article
The diagnostic value of 5.0 T ultra-high-field MRI susceptibility weighted imaging combined with multi-echo T2* mapping in microvascular invasion of hepatocellular carcinoma
LIANG Shuhang  YIN Dawei  FENG Zhichao  LIU Ying  LI Shaopeng  LIU Lianxin 

DOI:10.12015/issn.1674-8034.2025.12.014.


[Abstract] Objective To evaluate the application value of 5.0 T ultra-high-field magnetic resonance imaging (MRI) susceptibility weighted imaging (SWI) combined with multi-echo T2* mapping in microvascular invasion (MVI) of hepatocellular carcinoma (HCC).Materials and Methods A retrospective analysis was conducted on 44 HCC patients who met the inclusion and exclusion criteria. The SWI features of the lesions were analyzed, and the intratumoral susceptibility signal intensity (ITSS) was graded. Additionally, the R2* values of the lesions, peritumoral areas, and background liver tissue were calculated, along with the △R2* values. Statistical analysis was performed to examine the differences in these parameters under different MVI statuses.Results According to pathological standards, the MVI-positive group demonstrated higher ITSS grading and a greater propensity for associated hemorrhage. The R2* values of lesion, peritumoral and ΔR2* values in the MVI-positive and MVI-negative groups were (60.07 ± 25.22) Hz and (52.05 ± 21.51) Hz, (94.32 ± 29.32) Hz and (91.06 ± 30.69) Hz, (0.39 ± 0.40) and (0.13 ± 0.12), respectively. The corresponding P-values were 0.312, 0.740, and < 0.001. The difference in ΔR2* value was statistically significant, and its diagnostic performance was superior to that of ITSS grading (AUC = 0.838, 0.686).Conclusions Based on the 5.0 T ultra-high-field MRI SWI sequence, a high ITSS grade and the △R2* value from the T2* mapping sequence are potential predictive biomarkers for HCC MVI. The combination of these two parameters can enhance diagnostic performance.
[Keywords] ultra-high filed;magnetic resonance imaging;susceptibility weighted imaging;hepatocellular carcinoma;microvascular invasion

LIANG Shuhang1   YIN Dawei2   FENG Zhichao3   LIU Ying1   LI Shaopeng2*   LIU Lianxin1  

1 Department of General Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei 230001, China

2 Department of Radiology, The First Affiliated Hospital of University of Science and Technology of China, Hefei 230032, China

3 United Imaging Healthcare Institute for Medical Imaging Technology, Shanghai 200025, China

Corresponding author: LI S P, E-mail: 814993570@qq.com

Conflicts of interest   None.

Received  2025-08-18
Accepted  2025-12-06
DOI: 10.12015/issn.1674-8034.2025.12.014
DOI:10.12015/issn.1674-8034.2025.12.014.

[1]
Department of Medical Administration of National Health Commission of the People's Republic of China. Guideline for diagnosis and treatment of primary liver cancer (2024 edition) [J]. Chin J Magn Reson Imaging, 2024, 15(6):1-18. DOI: 10.12015/issn.1674-8034.2024.06.001.
[2]
LIMA H A, MOAZZAM Z, ENDO Y, et al. TBS-based preoperative score to predict non-transplantable recurrence and identify candidates for upfront resection versus transplantation for hepatocellular carcinoma[J]. Ann Surg Oncol, 2023, 30(6): 3363-3373. DOI: 10.1245/s10434-023-13273-1.
[3]
ZHANG J, LI Y Q, XIA J J, et al. Prediction of microvascular invasion and recurrence after curative resection of LI-RADS category 5 hepatocellular carcinoma on Gd-BOPTA enhanced MRI[J]. J Hepatocell Carcinoma, 2024, 11: 941-952. DOI: 10.2147/JHC.S459686.
[4]
FUKUSHIMA R, HARIMOTO N, OKUYAMA T, et al. New predictors of microvascular invasion for small hepatocellular carcinoma≤3 cm[J]. Int J Clin Oncol, 2024, 29(8): 1182-1190. DOI: 10.1007/s10147-024-02553-9.
[5]
YANG S Y, NI H S, ZHANG A X, et al. Grading severity of MVI impacts long-term outcomes after laparoscopic liver resection for early-stage hepatocellular carcinoma: A multicenter study[J/OL]. Am J Surg, 2024, 238: 115988 [2025-08-18]. https://pubmed.ncbi.nlm.nih.gov/39342882/. DOI: 10.1016/j.amjsurg.2024.115988.
[6]
WANG Q H, ZHOU Y J, YANG H A, et al. MRI-based clinical-radiomics nomogram model for predicting microvascular invasion in hepatocellular carcinoma[J]. Med Phys, 2024, 51(7): 4673-4686. DOI: 10.1002/mp.17087.
[7]
CHEN Q J, LONG L L, LI C H, et al. Diagnostic value of diffusion-weighted imaging parameters for prediction of microvascular patterns in hepatocellular carcinoma[J]. Radiol Pract, 2024, 39(5): 577-584. DOI: 10.13609/j.cnki.1000-0313.2024.05.003.
[8]
LI J, MA Y H, YANG C Y, et al. Radiomics analysis of R2* maps to predict early recurrence of single hepatocellular carcinoma after hepatectomy[J/OL]. Front Oncol, 2024, 14: 1277698 [2025-08-18]. https://pubmed.ncbi.nlm.nih.gov/38463221/. DOI: 10.3389/fonc.2024.1277698.
[9]
REN X, ZHAO Y, WANG N, et al. Intravoxel incoherent motion and enhanced T2*-weighted angiography for preoperative prediction of microvascular invasion in hepatocellular carcinoma[J/OL]. Front Oncol, 2024, 14: 1389769 [2025-08-18]. https://pubmed.ncbi.nlm.nih.gov/39184049/. DOI: 10.3389/fonc.2024.1389769.
[10]
TAO R, ZHANG J, DAI Y, et al. Characterizing hepatocellular carcinoma using multi-breath-hold two-dimensional susceptibility-weighted imaging: Comparison to conventional liver MRI[J/OL]. Clin Radiol, 2012, 67(12): e91-e97 [2025-08-18]. https://pubmed.ncbi.nlm.nih.gov/22981726/. DOI: 10.1016/j.crad.2012.08.015.
[11]
ZHENG L Y, YANG C, SHENG R F, et al. Renal imaging at 5T versus 3T: a comparison study[J/OL]. Insights Imag, 2022, 13(1): 155 [2025-08-18]. https://pubmed.ncbi.nlm.nih.gov/36153471/. DOI: 10.1186/s13244-022-01290-9.
[12]
ZHENG L Y, YANG C, LIANG L, et al. T2-weighted MRI and reduced-FOV diffusion-weighted imaging of the human pancreas at 5 T: A comparison study with 3 T[J]. Med Phys, 2023, 50(1): 344-353. DOI: 10.1002/mp.15970.
[13]
LI S P, LIU C, YIN D W, et al. Susceptibility weighted imaging based on 5.0T MRI for diagnosing hepatocellular carcinoma complicated with vein tumor thrombi[J]. Chin J Med Imag Technol, 2024, 40(5): 682-685. DOI: 10.13929/j.issn.1003-3289.2024.05.010.
[14]
CHANG S X, LI G W, CHEN Y, et al. Characterizing venous vasculatures of hepatocellular carcinoma using a multi-breath-hold two-dimensional susceptibility weighted imaging[J/OL]. PLoS One, 2013, 8(6): e65895 [2025-08-18]. https://pubmed.ncbi.nlm.nih.gov/23799060/. DOI: 10.1371/journal.pone.0065895.
[15]
DUAN T, CHEN J, XIA C C, et al. Diagnostic performance of susceptibility-weighted imaging in the grading of hepatocellular carcinoma[J]. J Sichuan Univ Med Sci Ed, 2018, 49(2): 248-251. DOI: 10.13464/j.scuxbyxb.2018.02.019.
[16]
Chinese Association of Liver Cancer of Chinese Medical Doctor Association, SHEN F, CHENG S Q, et al. China expert consensus on diagnosis and treatment of hepatocellular carcinoma with microvascular invasion (2024 edition)[J]. Chinese Journal of Digestive Surgery, 2024(2): 153-164. DOI: 10.3760/cma.j.cn115610-20240125-00041.
[17]
XU Q, ZHAO H J, GAO R C, et al. Insulinoma detection and surgery planning: a comparative study of 5.0T MRI versus 3.0T MRI and MDCT[J]. Abdom Radiol (NY), 2025, 50(9): 4148-4159. DOI: 10.1007/s00261-024-04680-3.
[18]
LIU J X, WANG Z S, YU D, et al. Comparative analysis of hepatic fat quantification across 5 T, 3 T and 1.5 T: A study on consistency and feasibility[J/OL]. Eur J Radiol, 2024, 180: 111709 [2025-08-18]. https://pubmed.ncbi.nlm.nih.gov/39222564/. DOI: 10.1016/j.ejrad.2024.111709.
[19]
HUANG Z, ZHU R H, LI S S, et al. Comparison of sonazoid-contrast-enhanced ultrasound and Gd-EOB-DTPA-enhanced MRI for predicting microvascular invasion in hepatocellular carcinoma[J]. Ultrasound Med Biol, 2024, 50(9): 1339-1345. DOI: 10.1016/j.ultrasmedbio.2024.05.008.
[20]
XU L, ZHANG X Q, ZHANG T, et al. Pathological features of hepatocellular carcinoma with irregular rim-like arterial phase enhancement and its early recurrence prognosis analysis[J]. Chin J Med Imag, 2024, 32(10): 1032-1039. DOI: 10.3969/j.issn.1005-5185.2024.10.011.
[21]
YADAV V K, SHARMA S, MAURYA S, et al. Presence of fragmented intratumoral thrombosed microvasculature in the necrotic and peri-necrotic regions on SWI differentiates IDH wild-type glioblastoma from IDH mutant grade 4 astrocytoma[J]. J Magn Reson Imaging, 2025, 62(1): 258-270. DOI: 10.1002/jmri.29695.
[22]
WANG J, ZHANG J J, YU J B. Application of enhanced T2* weighted angiography quantitative parameters in predicting the invasiveness of cystic gland tumors[J]. Chin J Med Imag, 2024, 32(11): 1160-1163, 1169. DOI: 10.3969/j.issn.1005-5185.2024.11.012.
[23]
CHU Y W, SUN J, PAN L, et al. Study on the correlation of susceptibility weighted imaging with HIF-1α expression, microvessel density in clear cell renal cell carcinoma[J]. J Pract Radiol, 2023(2): 247-250. DOI: 10.3969/j.issn.1002-1671.2023.02.018.
[24]
BAI L, YIN H K, GE Q, et al. MRI combined with DWI and DCE scanning sequences to evaluate hepatitis B hepatocellular carcinoma and differentiate it from benign lesions with rich blood supply in the liver[J]. Chin Hepatol, 2024, 29(8): 952-955, 964. DOI: 10.14000/j.cnki.issn.1008-1704.2024.08.019.
[25]
CHEN R Q, SHE D J, ZHENG Y Y, et al. Pathological grading of hepatocellular carcinomas with susceptibility weighted imaging evaluation of venous vasculatures within and around the tumor[J]. J Clin Radiol, 2018, 37(11): 1852-1855. DOI: 10.13437/j.cnki.jcr.2018.11.021.
[26]
ZHAO H J, XU Q, GAO R C, et al. Clinical feasibility of 5.0 T MRI/MRCP in characterizing pancreatic cystic lesions: comparison with 3.0 T and MDCT[J/OL]. Diagnostics (Basel), 2024, 14(21): 2457 [2025-08-18]. https://pubmed.ncbi.nlm.nih.gov/39518424/. DOI: 10.3390/diagnostics14212457.
[27]
YANG X J, LOU C, ZHANG Q, et al. Hypoxia-induced circRTN4IP1 promotes progression and glycolysis of hepatocellular carcinoma cells[J/OL]. Funct Integr Genomics, 2023, 23(4): 339 [2025-08-18]. https://pubmed.ncbi.nlm.nih.gov/37982910/. DOI: 10.1007/s10142-023-01256-0.
[28]
WANG Z Z, LI Q, LIANG B. Hypoxia as a target for combination with transarterial chemoembolization in hepatocellular carcinoma[J/OL]. Pharmaceuticals (Basel), 2024, 17(8): 1057 [2025-08-18]. https://pubmed.ncbi.nlm.nih.gov/39204162/. DOI: 10.3390/ph17081057.
[29]
XU X H, CHEN M, ZHANG J, et al. Can the apparent transverse relaxation rate (R2*) evaluate the efficacy of concurrent chemoradiotherapy in locally advanced nasopharyngeal carcinoma a preliminary experience[J/OL]. BMC Med Imaging, 2023, 23(1): 69 [2025-08-18]. https://pubmed.ncbi.nlm.nih.gov/37264331/. DOI: 10.1186/s12880-023-01029-y.
[30]
YU W H, YAN W J, YI J, et al. Application of diffusion kurtosis imaging and blood oxygen level-dependent magnetic resonance imaging in kidney injury associated with ANCA-associated vasculitis[J]. Tomography, 2024, 10(7): 970-982. DOI: 10.3390/tomography10070073.
[31]
MORI K, INOUE T, MACHIBA Y, et al. Effects of canagliflozin on kidney oxygenation evaluated using blood oxygenation level-dependent MRI in patients with type 2 diabetes[J/OL]. Front Endocrinol (Lausanne), 2024, 15: 1451671 [2025-08-18]. https://pubmed.ncbi.nlm.nih.gov/39280006/. DOI: 10.3389/fendo.2024.1451671.
[32]
XU Q H, ZHAO Y, WANG Y, et al. Value of texture analysis based on R2* map for predicting early recurrence of HCC after hepatectomy[J]. Chin J Magn Reson Imag, 2022, 13(12): 87-92. DOI: 10.12015/issn.1674-8034.2022.12.015.
[33]
LI J Y, ZHOU M H, TONG Y H, et al. Tumor growth pattern and intra- and peritumoral radiomics combined for prediction of initial TACE outcome in patients with primary hepatocellular carcinoma[J]. J Hepatocell Carcinoma, 2024, 11: 1927-1944. DOI: 10.2147/JHC.S480554.
[34]
JIANG H Y, WEI H, YANG T, et al. VICT2 trait: prognostic alternative to peritumoral hepatobiliary phase hypointensity in HCC[J/OL]. Radiology, 2023, 307(2): e221835 [2025-08-18]. https://pubmed.ncbi.nlm.nih.gov/36786702/. DOI: 10.1148/radiol.221835.
[35]
ZHU Z, YU Y X, LU J, et al. Clinical application value of predicting microvascular invasion in hepatocellular carcinoma using intratumoral and peritumoral radiomics models: A multicenter study[J]. Chin J Magn Reson Imag, 2024, 15(8): 132-138. DOI: 10.12015/issn.1674-8034.2024.08.020.
[36]
GAO L M, XIONG M L, CHEN X J, et al. Multi-region radiomic analysis based on multi-sequence MRI can preoperatively predict microvascular invasion in hepatocellular carcinoma[J/OL]. Front Oncol, 2022, 12: 818681 [2025-08-18]. https://pubmed.ncbi.nlm.nih.gov/35574328/. DOI: 10.3389/fonc.2022.818681.
[37]
CHONG H H, GONG Y D, PAN X P, et al. Peritumoral dilation radiomics of gadoxetate disodium-enhanced MRI excellently predicts early recurrence of hepatocellular carcinoma without macrovascular invasion after hepatectomy[J]. J Hepatocell Carcinoma, 2021, 8: 545-563. DOI: 10.2147/JHC.S309570.
[38]
TABARI A, D'AMORE B, NOH J, et al. Quantitative peritumoral magnetic resonance imaging fingerprinting improves machine learning-based prediction of overall survival in colorectal cancer[J]. Explor Target Antitumor Ther, 2024, 5(1): 74-84. DOI: 10.37349/etat.2024.00205.

PREV Diagnostic value of whole-body magnetic resonance imaging for incidental lesions in postoperative breast cancer patients
NEXT The value of machine learning model constructed based on parameters of DCE-MRI and clinical risk factors in predicting the unstable state of rectal cancer microsatellites
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn