Share:
Share this content in WeChat
X
Clinical Article
Diagnostic value of synthetic magnetic resonance imaging combined with amide proton transfer-weighted imaging in the grading of prostate cancer
ZHAO Zeyu  ZHANG Qian  HU Chenhan  QIAO Xiaomeng  BAO Jie  WANG Ximing 

DOI:10.12015/issn.1674-8034.2025.12.018.


[Abstract] Objective To investigate the diagnostic value of synthetic magnetic resonance imaging (SyMRI) combined with amide proton transfer-weighted (APTw) imaging in the ISUP grading of prostate cancer (PCa).Materials and Methods Total 78 patients with pathologically confirmed PCa were retrospectively enrolled in The First Affiliated Hospital of Soochow University form April 2024 to April 2025. Based on pathological results, the PCa were classified according to the ISUP grade system. All patients underwent conventional MRI sequences, MAGiC, and APTw imaging scans. Longitudinal relaxation time (T1), transverse relaxation time (T2), proton density (PD), amide proton transfer rate (APT), and apparent diffusion coefficient (ADC) values were measured. Independent Student t test or Mann-Whitney U test were used to assess differences in quantitative values between low-grade PCa (ISUP grade 1) and intermediate/high-grade PCa (ISUP grade ≥ 2). Parametric variables were correlated with the ISUP grades using the Spearman rank correlation coefficient. Receiver operating characteristic (ROC) curve analysis was performed to evaluate the diagnostic efficiency of individual parameters and combined models in distinguishing intermediate/high-grade PCa.Results Intermediate/high-grade PCa group showed significantly lower T2 and ADC values but higher APT value than low-grade group (P < 0.05). There was no significant differences in T1 and PD values (P > 0.05). ISUP grade demonstrated a significant positive correlation with APT value (r = 0.359, P = 0.001) and significant negative correlations with T2 value (r = -0.304, P = 0.007) and ADC value (r = -0.535, P < 0.001). No significant correlations were found with T1 and PD values (r = -0.158, -0.103, both P > 0.05). For diagnosing intermediate/high-grade PCa, the AUCs were 0.71 (95% CI: 0.60 to 0.80) for T2 value and 0.75 (95% CI: 0.64 to 0.84) for APT value. Combined model was established by integrating T2 and APT values. AUC of the combined model was 0.78 (95% CI: 0.67 to 0.87), showing no significant difference compared with ADC value (AUC = 0.86, 95% CI: 0.76 to 0.92, DeLong test: P > 0.05).Conclusions SyMRI and APTw imaging are beneficial for grading of PCa. The combined model demonstrates diagnostic performance comparable to ADC value in distinguishing intermediate/high-grade PCa, providing valuable guidance for grading and clinical decision of PCa.
[Keywords] prostate cancer;synthetic magnetic resonance imaging;amide proton transfer-weighted imaging;International Society of Urological Pathology grading;magnetic resonance imaging

ZHAO Zeyu   ZHANG Qian   HU Chenhan   QIAO Xiaomeng   BAO Jie   WANG Ximing*  

Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China

Corresponding author: WANG X M, E-mail: wangximing1998@163.com

Conflicts of interest   None.

Received  2025-08-17
Accepted  2025-11-10
DOI: 10.12015/issn.1674-8034.2025.12.018
DOI:10.12015/issn.1674-8034.2025.12.018.

[1]
BRAY F, LAVERSANNE M, SUNG H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2024, 74(3): 229-263. DOI: 10.3322/caac.21834.
[2]
QI J L, LI M L, WANG L J, et al. National and subnational trends in cancer burden in China, 2005-20: an analysis of national mortality surveillance data[J/OL]. Lancet Public Health, 2023, 8(12): e943-e955 [2025-08-10]. https://pubmed.ncbi.nlm.nih.gov/38000889/. DOI: 10.1016/S2468-2667(23)00211-6.
[3]
FAZEKAS T, SHIM S R, BASILE G, et al. Magnetic resonance imaging in prostate cancer screening: a systematic review and meta-analysis[J]. JAMA Oncol, 2024, 10(6): 745-754. DOI: 10.1001/jamaoncol.2024.0734.
[4]
BERGENGREN O, PEKALA K R, MATSOUKAS K, et al. 2022 update on prostate cancer epidemiology and risk factors-a systematic review[J]. Eur Urol, 2023, 84(2): 191-206. DOI: 10.1016/j.eururo.2023.04.021.
[5]
WANG G C, ZHAO D, SPRING D J, et al. Genetics and biology of prostate cancer[J]. Genes Dev, 2018, 32(17/18): 1105-1140. DOI: 10.1101/gad.315739.118.
[6]
LOKANT M T, NAZ R K. Presence of PSA auto-antibodies in men with prostate abnormalities (prostate cancer/benign prostatic hyperplasia/prostatitis)[J]. Andrologia, 2015, 47(3): 328-332. DOI: 10.1111/and.12265.
[7]
WANG Y H, LIANG C, ZHU F P, et al. Improving the understanding of PI-RADS in practice: characters of PI-RADS 4 and 5 lesions with negative biopsy[J]. Asian J Androl, 2023, 25(2): 217-222. DOI: 10.4103/aja2022112.
[8]
WILLIAMS C, AHDOOT M, DANESHVAR M A, et al. Why does magnetic resonance imaging-targeted biopsy miss clinically significant cancer [J]. J Urol, 2022, 207(1): 95-107. DOI: 10.1097/JU.0000000000002182.
[9]
CHATTERJEE A, DEVARAJ A, MATHEW M, et al. Performance of T2 maps in the detection of prostate cancer[J]. Acad Radiol, 2019, 26(1): 15-21. DOI: 10.1016/j.acra.2018.04.005.
[10]
HECTORS S J, SEMAAN S, SONG C, et al. Advanced diffusion-weighted imaging modeling for prostate cancer characterization: correlation with quantitative histopathologic tumor tissue composition-a hypothesis-generating study[J]. Radiology, 2018, 286(3): 918-928. DOI: 10.1148/radiol.2017170904.
[11]
AHMED H U, BOSAILY A E, BROWN L C, et al. Diagnostic accuracy of multi-parametric MRI and TRUS biopsy in prostate cancer (PROMIS): a paired validating confirmatory study[J]. Lancet, 2017, 389(10071): 815-822. DOI: 10.1016/S0140-6736(16)32401-1.
[12]
CUI Y D, HAN S Y, LIU M, et al. Diagnosis and grading of prostate cancer by relaxation maps from synthetic MRI[J]. J Magn Reson Imaging, 2020, 52(2): 552-564. DOI: 10.1002/jmri.27075.
[13]
XIAO Y, PENG Z W. Review of the application of synthetic magnetic resonance imaging in tumor diagnosis[J]. Lab Med Clin, 2023, 20(16): 2424-2427, 2455. DOI: 10.3969/j.issn.1672-9455.2023.16.028.
[14]
JI S, YANG D, LEE J, et al. Synthetic MRI: technologies and applications in neuroradiology[J]. J Magn Reson Imaging, 2022, 55(4): 1013-1025. DOI: 10.1002/jmri.27440.
[15]
LI X J, FAN Z C, JIANG H N, et al. Synthetic MRI in breast cancer: differentiating benign from malignant lesions and predicting immunohistochemical expression status[J/OL]. Sci Rep, 2023, 13: 17978 [2025-08-10]. https://pubmed.ncbi.nlm.nih.gov/37864025/. DOI: 10.1038/s41598-023-45079-2.
[16]
ZHU K X, CHEN Z C, CUI L L, et al. The preoperative diagnostic performance of multi-parametric quantitative assessment in rectal carcinoma: A preliminary study using synthetic magnetic resonance imaging[J/OL]. Front Oncol, 2022, 12: 682003 [2025-08-10]. https://pubmed.ncbi.nlm.nih.gov/35707367/. DOI: 10.3389/fonc.2022.682003.
[17]
ARITA Y, TAKAHARA T, YOSHIDA S, et al. Quantitative assessment of bone metastasis in prostate cancer using synthetic magnetic resonance imaging[J]. Invest Radiol, 2019, 54(10): 638-644. DOI: 10.1097/RLI.0000000000000579.
[18]
MAI J L, ABUBRIG M, LEHMANN T, et al. T2 mapping in prostate cancer[J]. Invest Radiol, 2019, 54(3): 146-152. DOI: 10.1097/rli.0000000000000520.
[19]
ZHOU J Y, HONG X H, ZHAO X N, et al. APT-weighted and NOE-weighted image contrasts in glioma with different RF saturation powers based on magnetization transfer ratio asymmetry analyses[J]. Magn Reson Med, 2013, 70(2): 320-327. DOI: 10.1002/mrm.24784.
[20]
VAN ZIJL P C M, YADAV N N. Chemical exchange saturation transfer (CEST): what is in a name and what isn't [J]. Magn Reson Med, 2011, 65(4): 927-948. DOI: 10.1002/mrm.22761.
[21]
JIANG H, LI Z Q, MENG N, et al. Progress in clinical application of chemical exchange saturation transfer[J]. J Clin Radiol, 2023, 42(8): 1368-1371. DOI: 10.13437/j.cnki.jcr.2023.08.022.
[22]
JU Y, LIU A L, WANG Y, et al. Amide proton transfer magnetic resonance imaging to evaluate renal impairment in patients with chronic kidney disease[J]. Magn Reson Imaging, 2022, 87: 177-182. DOI: 10.1016/j.mri.2021.11.015.
[23]
YIN H J, WANG D D, YAN R F, et al. Comparison of diffusion kurtosis imaging and amide proton transfer imaging in the diagnosis and risk assessment of prostate cancer[J/OL]. Front Oncol, 2021, 11: 640906 [2025-08-10]. https://pubmed.ncbi.nlm.nih.gov/33937041/. DOI: 10.3389/fonc.2021.640906.
[24]
KAMITANI T, SAGIYAMA K, YAMASAKI Y, et al. Amide proton transfer (APT) imaging of breast cancers and its correlation with biological status[J]. Clin Imaging, 2023, 96: 38-43. DOI: 10.1016/j.clinimag.2023.02.002.
[25]
GUO Z X, QIN X Y, MU R H, et al. Amide proton transfer could provide more accurate lesion characterization in the transition zone of the prostate[J]. J Magn Reson Imaging, 2022, 56(5): 1311-1319. DOI: 10.1002/jmri.28204.
[26]
WANG H J, CAI Q, HUANG Y P, et al. Amide proton transfer-weighted MRI in predicting histologic grade of bladder cancer[J]. Radiology, 2022, 305(1): 127-134. DOI: 10.1148/radiol.211804.
[27]
TURKBEY B, ROSENKRANTZ A B, HAIDER M A, et al. Prostate imaging reporting and data system version 2.1: 2019 update of prostate imaging reporting and data system version 2[J]. Eur Urol, 2019, 76(3): 340-351. DOI: 10.1016/j.eururo.2019.02.033.
[28]
OTO A, KAYHAN A, JIANG Y L, et al. Prostate cancer: differentiation of central gland cancer from benign prostatic hyperplasia by using diffusion-weighted and dynamic contrast-enhanced MR imaging[J]. Radiology, 2010, 257(3): 715-723. DOI: 10.1148/radiol.10100021.
[29]
PENG Y H, JIANG Y L, YANG C, et al. Quantitative analysis of multiparametric prostate MR images: differentiation between prostate cancer and normal tissue and correlation with Gleason score: a computer-aided diagnosis development study[J]. Radiology, 2013, 267(3): 787-796. DOI: 10.1148/radiol.13121454.
[30]
LANGER D L, VAN DER KWAST T H, EVANS A J, et al. Intermixed normal tissue within prostate cancer: effect on MR imaging measurements of apparent diffusion coefficient and T2: sparse versus dense cancers[J]. Radiology, 2008, 249(3): 900-908. DOI: 10.1148/radiol.2493080236.
[31]
GRACIEN R M, REITZ S C, HOF S M, et al. Changes and variability of proton density and T1 relaxation times in early multiple sclerosis: MRI markers of neuronal damage in the cerebral cortex[J]. Eur Radiol, 2016, 26(8): 2578-2586. DOI: 10.1007/s00330-015-4072-x.
[32]
AL-BOURINI O, HOSSEINI A S A, GIGANTI F, et al. T1 mapping of the prostate using single-shot T1FLASH: a clinical feasibility study to optimize prostate cancer assessment[J]. Invest Radiol, 2023, 58(6): 380-387. DOI: 10.1097/RLI.0000000000000945.
[33]
CAO H Y, XU W J, XU Y, et al. Value of synthetic MRI quantitative parameters in preprocedural evaluation for TRUS/MRI fusion-guided biopsy of the prostate[J]. Prostate, 2023, 83(11): 1089-1098. DOI: 10.1002/pros.24550.
[34]
CHOI Y S, AHN S S, LEE S K, et al. Amide proton transfer imaging to discriminate between low- and high-grade gliomas: added value to apparent diffusion coefficient and relative cerebral blood volume[J]. Eur Radiol, 2017, 27(8): 3181-3189. DOI: 10.1007/s00330-017-4732-0.
[35]
QIN X Y, MU R H, ZHENG W, et al. Comparison and combination of amide proton transfer magnetic resonance imaging and the apparent diffusion coefficient in differentiating the grades of prostate cancer[J]. Quant Imaging Med Surg, 2023, 13(2): 812-824. DOI: 10.21037/qims-22-721.
[36]
KIDO A, TAMADA T, UEDA Y, et al. Comparison between amide proton transfer magnetic resonance imaging using 3-dimensional acquisition and diffusion-weighted imaging for characterization of prostate cancer: a preliminary study[J]. J Comput Assist Tomogr, 2023, 47(2): 178-185. DOI: 10.1097/RCT.0000000000001398.
[37]
TAKAYAMA Y, NISHIE A, SUGIMOTO M, et al. Amide proton transfer (APT) magnetic resonance imaging of prostate cancer: comparison with Gleason scores[J]. MAGMA, 2016, 29(4): 671-679. DOI: 10.1007/s10334-016-0537-4.
[38]
YAMAUCHI F I, PENZKOFER T, FEDOROV A, et al. Prostate cancer discrimination in the peripheral zone with a reduced field-of-view T(2)-mapping MRI sequence[J]. Magn Reson Imaging, 2015, 33(5): 525-530. DOI: 10.1016/j.mri.2015.02.006.
[39]
ZHOU J Y, HEO H Y, KNUTSSON L, et al. APT-weighted MRI: Techniques, current neuro applications, and challenging issues[J]. J Magn Reson Imaging, 2019, 50(2): 347-364. DOI: 10.1002/jmri.26645.
[40]
HU W J, LIU A L, CHEN L H, et al. The value of amide proton transfer imaging combined with T2-mapping for differentiating prostate cancer from benign prostatic hyperplasia[J]. Radiol Pract, 2022, 37(11): 1416-1421. DOI: 10.13609/j.cnki.1000-0313.2022.11.015.
[41]
YANG L, WANG L, TAN Y C, et al. Amide Proton Transfer-weighted MRI combined with serum prostate-specific antigen levels for differentiating malignant prostate lesions from benign prostate lesions: a retrospective cohort study[J/OL]. Cancer Imaging, 2023, 23(1): 3 [2025-10-04]. https://pubmed.ncbi.nlm.nih.gov/36611191/. DOI: 10.1186/s40644-022-00515-w.

PREV Prediction of pathological grading in prostate adenocarcinoma based on multiparametric MRI habitat imaging
NEXT Radiomics analysis of multi-sequence MRI evaluate lymphovascular space invasion in endometrial carcinoma
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn