Share:
Share this content in WeChat
X
Clinical Article
Radiomics analysis of multi-sequence MRI evaluate lymphovascular space invasion in endometrial carcinoma
SUN Yalin  CHEN Jingya  LAN Qi  XIA Fan  WANG Yuying  CAO Yingying  REN Shuai  PAN Zhaochun  WANG Zhongqiu 

DOI:10.12015/issn.1674-8034.2025.12.019.


[Abstract] Objective To investigate the value of intratumoral and peritumoral radiomics features based on MRI images for preoperative noninvasively predicting lymphovascular space invasion (LVSI) status in endometrial carcinoma (EC) patients.Materials and Methods Clinical and routine imaging features of 222 patients with histopathologically proved EC were retrospectively analyzed. Radiomics features from both intra- and peritumoral regions in T2-weighted imaging (T2WI), the contrast-enhanced T1-weighted images (CE-T1WI) at delayed phase and apparent diffusion coefficient (ADC) were extracted. The independent risk factors were identified through univariate and multivariate logistic analysis to construct predictive models (clinical, radiomics and combined). Receiver operating characteristic (ROC) curve was used to analyze the prediction efficiency of these models. Decision curve analysis (DCA) and calibration curves were utilized to assess the clinical utility and calibration performance of the models, respectively.Results The radiomics model established based on peritumoral 3 mm in T2WI sequences showed best performance, and the AUC of the training group and validation group were 0.902 and 0.803, respectively. The combined model based on tumor maximum diameter, the value of ADC and radiomics features had the optimal performance and achieved AUC values of 0.903 and 0.801 in the training and validation cohorts respectively. The calibration curve results indicated that the combined model had good calibration, and the net benefit of the model was the highest in the decision curve analysis.Conclusions The intratumoral and peritumoral radiomics models of EC based on MRI images have good clinical performance and can be applied to predict LVSI characteristics of EC noninvasively.
[Keywords] endometrial carcinoma;lymphovascular space invasion;peritumor;radiomics;magnetic resonance imaging

SUN Yalin1   CHEN Jingya1   LAN Qi1   XIA Fan1   WANG Yuying1   CAO Yingying1   REN Shuai1   PAN Zhaochun2*   WANG Zhongqiu1*  

1 Department of Radiology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China

2 Department of Outpatient, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China

Corresponding author: PAN Z C, E-mail: zhouping@126.com WANG Z Q, E-mail: zhongqiuwang@njucm.edu.cn

Conflicts of interest   None.

Received  2025-08-05
Accepted  2025-10-10
DOI: 10.12015/issn.1674-8034.2025.12.019
DOI:10.12015/issn.1674-8034.2025.12.019.

[1]
ZHAO X L, DUAN Z H, ZHANG M, et al. The disease burden and the prognosis of epidemiological trend on endometrial cancer in China[J]. Chin J Prev Control Chronic Dis, 2023, 31(8): 568-573. DOI: 10.16386/j.cjpccd.issn.1004-6194.2023.08.002.
[2]
CHEN X J, ZHANG J F, LU W, et al. Chinese expert consensus on quality control and quality indicators forsurgical treatment of endometrial carcinoma (2024 edition)[J]. Chin J Pract Gynecol Obstet, 2024, 40(6): 626-637. DOI: 10.19538/j.fk2024060113.
[3]
SUN B W, ZHANG X B, DONG Y Y, et al. Prognostic significance of lymphovascular space invasion in early-stage low-grade endometrioid endometrial cancer: a fifteen-year retrospective Chinese cohort study[J/OL]. World J Surg Oncol, 2024, 22(1): 203 [2025-07-31].https://pubmed.ncbi.nlm.nih.gov/39080611/. DOI: 10.1186/s12957-024-03483-6.
[4]
SIEGENTHALER F, EPSTEIN E, BÜCHI C A, et al. Prognostic value of lymphovascular space invasion according to the molecular subgroups in endometrial cancer[J]. Int J Gynecol Cancer, 2023, 33(11): 1702-1707. DOI: 10.1136/ijgc-2023-004606.
[5]
YARANDI F, SHIRALI E, AKHAVAN S, et al. The impact of lymphovascular space invasion on survival in early stage low-grade endometrioid endometrial cancer[J/OL]. Eur J Med Res, 2023, 28(1): 118 [2025-07-31]. https://pubmed.ncbi.nlm.nih.gov/36915143/. DOI: 10.1186/s40001-023-01084-9.
[6]
GAN L, HUA L, CHEN S J. Research progress of radiomics in common gynecologic malignancies[J]. Chin J Magn Reson Imag, 2024, 15(5): 227-234. DOI: 10.12015/issn.1674-8034.2024.05.037.
[7]
HAN L, CHEN Y L, ZHENG A, et al. Prognostic value of three-tiered scoring system for lymph-vascular space invasion in endometrial cancer: A systematic review and meta-analysis[J]. Gynecol Oncol, 2024, 184: 198-205. DOI: 10.1016/j.ygyno.2024.01.046.
[8]
ZHAO X, SUN F, LENG N, et al. The past, present, and future of FIGO staging of endometrial cancer[J/OL]. J Gynecol Oncol, 2025, 36(4): e105 [2025-07-31]. https://pubmed.ncbi.nlm.nih.gov/40350708/. DOI: 10.3802/jgo.2025.36.e105.
[9]
BEREK J S, MATIAS-GUIU X, CREUTZBERG C, et al. FIGO staging of endometrial cancer: 2023[J]. Int J Gynaecol Obstet, 2023, 162(2): 383-394. DOI: 10.1002/ijgo.14923.
[10]
GAFFNEY D, MATIAS-GUIU X, MUTCH D, et al. 2023 FIGO staging system for endometrial cancer: The evolution of the revolution[J]. Gynecol Oncol, 2024, 184: 245-253. DOI: 10.1016/j.ygyno.2024.02.002.
[11]
PETERS E E M, NUCCI M R, GILKS C B, et al. Practical guidance for assessing and reporting lymphovascular space invasion (LVSI) in endometrial carcinoma[J]. Histopathology, 2025, 86(2): 173-182. DOI: 10.1111/his.15272.
[12]
DING S X, MENG H, YIN X P. Research progress of radiomics in endometrial cancer[J]. Chin J Magn Reson Imag, 2023, 14(4): 188-192. DOI: 10.12015/issn.1674-8034.2023.04.033.
[13]
LI X F, DESSI M, MARCUS D, et al. Prediction of deep myometrial infiltration, clinical risk category, histological type, and lymphovascular space invasion in women with endometrial cancer based on clinical and T2-weighted MRI radiomic features[J/OL]. Cancers (Basel), 2023, 15(8): 2209 [2025-07-31]. https://pubmed.ncbi.nlm.nih.gov/37190137/. DOI: 10.3390/cancers15082209.
[14]
DI DONATO V, KONTOPANTELIS E, CUCCU I, et al. Magnetic resonance imaging-radiomics in endometrial cancer: a systematic review and meta-analysis[J]. Int J Gynecol Cancer, 2023, 33(7): 1070-1076. DOI: 10.1136/ijgc-2023-004313.
[15]
LUO Y, MEI D D, GONG J S, et al. Multiparametric MRI-based radiomics nomogram for predicting lymphovascular space invasion in endometrial carcinoma[J]. J Magn Reson Imaging, 2020, 52(4): 1257-1262. DOI: 10.1002/jmri.27142.
[16]
MA W, MENG W, YIN J, et al. Predictive value of models based on MRI radiomics and clinical indicators for lymphovascular space invasion in endometrial cancer[J/OL]. BMC Cancer, 2025, 25(1): 796 [2025-07-31]. https://pubmed.ncbi.nlm.nih.gov/40295942/. DOI: 10.1186/s12885-025-14217-6.
[17]
STÅLBERG K, BJURBERG M, BORGFELDT C, et al. Lymphovascular space invasion as a predictive factor for lymph node metastases and survival in endometrioid endometrial cancer - a Swedish Gynecologic Cancer Group (SweGCG) study[J]. Acta Oncol, 2019, 58(11): 1628-1633. DOI: 10.1080/0284186X.2019.1643036.
[18]
FENG J, ZHANG Y, HUANG C Z, et al. Prognostic evaluation of lymph-vascular space invasion in patients with endometrioid and non-endometrioid endometrial cancer: A multicenter study[J/OL]. Eur J Surg Oncol, 2024, 50(4): 108261 [2025-07-31]. https://pubmed.ncbi.nlm.nih.gov/38484494/. DOI: 10.1016/j.ejso.2024.108261.
[19]
LONG L, LIU M L, DENG X J, et al. Tumor stiffness measurement at multifrequency MR elastography to predict lymphovascular space invasion in endometrial cancer[J/OL]. Radiology, 2024, 311(3): e232242 [2025-07-31]. https://pubmed.ncbi.nlm.nih.gov/38832881/. DOI: 10.1148/radiol.232242.
[20]
TORTORELLA L, RESTAINO S, ZANNONI G F, et al. Substantial lymph-vascular space invasion (LVSI) as predictor of distant relapse and poor prognosis in low-risk early-stage endometrial cancer[J/OL]. J Gynecol Oncol, 2021, 32(2): e11 [2025-07-31]. https://pubmed.ncbi.nlm.nih.gov/33470061/. DOI: 10.3802/jgo.2021.32.e11.
[21]
JORGE S, HOU J Y, TERGAS A I, et al. Magnitude of risk for nodal metastasis associated with lymphvascular space invasion for endometrial cancer[J]. Gynecol Oncol, 2016, 140(3): 387-393. DOI: 10.1016/j.ygyno.2016.01.002.
[22]
MAHESHWARI E, NOUGARET S, STEIN E B, et al. Update on MRI in evaluation and treatment of endometrial cancer[J]. Radiographics, 2022, 42(7): 2112-2130. DOI: 10.1148/rg.220070.
[23]
OTA T, TSUBOYAMA T, ONISHI H, et al. Diagnostic accuracy of MRI for evaluating myometrial invasion in endometrial cancer: a comparison of MUSE-DWI, rFOV-DWI, and DCE-MRI[J]. Radiol Med, 2023, 128(6): 629-643. DOI: 10.1007/s11547-023-01635-4.
[24]
LEFEBVRE T L, UENO Y, DOHAN A, et al. Development and validation of multiparametric MRI-based radiomics models for preoperative risk stratification of endometrial cancer[J]. Radiology, 2022, 305(2): 375-386. DOI: 10.1148/radiol.212873.
[25]
LIN Z J, WANG T, LI Q, et al. Development and validation of MRI-based radiomics model to predict recurrence risk in patients with endometrial cancer: a multicenter study[J]. Eur Radiol, 2023, 33(8): 5814-5824. DOI: 10.1007/s00330-023-09685-y.
[26]
WANG Z Y, ZHANG H C, LIN F, et al. Intra- and peritumoral radiomics of contrast-enhanced mammography predicts axillary lymph node metastasis in patients with breast cancer: A multicenter study[J]. Acad Radiol, 2023, 30(Suppl 2): S133-S142. DOI: 10.1016/j.acra.2023.02.005.
[27]
CHEN Q L, SHAO J J, XUE T, et al. Intratumoral and peritumoral radiomics nomograms for the preoperative prediction of lymphovascular invasion and overall survival in non-small cell lung cancer[J]. Eur Radiol, 2023, 33(2): 947-958. DOI: 10.1007/s00330-022-09109-3.
[28]
HOU J, LIU W Y. Advance of peritumoral radiomics research[J]. Chin J Magn Reson Imag, 2024, 15(3): 230-234. DOI: 10.12015/issn.1674-8034.2024.03.038.
[29]
ELHANANI O, BEN-URI R, KEREN L. Spatial profiling technologies illuminate the tumor microenvironment[J]. Cancer Cell, 2023, 41(3): 404-420. DOI: 10.1016/j.ccell.2023.01.010.
[30]
YAN R X, QIN S Y, XU J J, et al. A comparison of 2D and 3D magnetic resonance imaging-based intratumoral and peritumoral radiomics models for the prognostic prediction of endometrial cancer: a pilot study[J/OL]. Cancer Imaging, 2024, 24(1): 100 [2025-07-31]. https://pubmed.ncbi.nlm.nih.gov/39085930/. DOI: 10.1186/s40644-024-00743-2.
[31]
ZHANG Z H, WAN X J, LEI X Y, et al. Intra- and peri-tumoral MRI radiomics features for preoperative lymph node metastasis prediction in early-stage cervical cancer[J/OL]. Insights Imaging, 2023, 14(1): 65 [2025-07-31]. https://pubmed.ncbi.nlm.nih.gov/37060378/. DOI: 10.1186/s13244-023-01405-w.
[32]
LIN P L, XIE W Q, LI Y, et al. Intratumoral and peritumoral radiomics of MRIs predicts pathologic complete response to neoadjuvant chemoimmunotherapy in patients with head and neck squamous cell carcinoma[J/OL]. J Immunother Cancer, 2024, 12(11): e009616 [2025-07-31]. https://pubmed.ncbi.nlm.nih.gov/39500529/. DOI: 10.1136/jitc-2024-009616.
[33]
LI S Y, WANG Y D, SUN Y Y, et al. Both intra- and peri-tumoral radiomics signatures can be used to predict lymphatic vascular space invasion and lymphatic metastasis positive status from endometrial cancer MR imaging[J]. Abdom Radiol (NY), 2024, 49(11): 4140-4150. DOI: 10.1007/s00261-024-04432-3.
[34]
PÉREZ-MORALES J, TUNALI I, STRINGFIELD O, et al. Peritumoral and intratumoral radiomic features predict survival outcomes among patients diagnosed in lung cancer screening[J/OL]. Sci Rep, 2020, 10(1): 10528 [2025-07-31]. https://pubmed.ncbi.nlm.nih.gov/32601340/. DOI: 10.1038/s41598-020-67378-8.
[35]
ZHUO Y Y, FENG M X, YANG S Y, et al. Radiomics nomograms of tumors and peritumoral regions for the preoperative prediction of spread through air spaces in lung adenocarcinoma[J/OL]. Transl Oncol, 2020, 13(10): 100820 [2025-07-31]. https://pubmed.ncbi.nlm.nih.gov/32622312/. DOI: 10.1016/j.tranon.2020.100820.
[36]
LIU D, HUANG J Y, ZHANG Y F, et al. Multimodal MRI-based radiomics models for the preoperative prediction of lymphovascular space invasion of endometrial carcinoma[J/OL]. BMC Med Imaging, 2024, 24(1): 252 [2025-07-31]. https://pubmed.ncbi.nlm.nih.gov/39304802/. DOI: 10.1186/s12880-024-01430-1.
[37]
CHEN Y S, LI J P, ZHANG J, et al. Radiomic nomogram for predicting axillary lymph node metastasis in patients with breast cancer[J]. Acad Radiol, 2024, 31(3): 788-799. DOI: 10.1016/j.acra.2023.10.026.
[38]
CHEN J Y, WANG X R, LV H Y, et al. Development and external validation of a clinical-radiomics nomogram for preoperative prediction of LVSI status in patients with endometrial carcinoma[J]. J Cancer Res Clin Oncol, 2023, 149(15): 13943-13953. DOI: 10.1007/s00432-023-05044-y.
[39]
OLIVER-PEREZ M R, PADILLA-ISERTE P, ARENCIBIA-SANCHEZ O, et al. Lymphovascular space invasion in early-stage endometrial cancer (LySEC): patterns of recurrence and predictors. A multicentre retrospective cohort study of the Spain gynecologic oncology group[J/OL]. Cancers (Basel), 2023, 15(9): 2612 [2025-07-31]. https://pubmed.ncbi.nlm.nih.gov/37174081/. DOI: 10.3390/cancers15092612.
[40]
LAUFER J, SCASSO S, PAPADIA A, et al. Association between tumor diameter and lymphovascular space invasion among women with early-stage endometrial cancer[J]. Int J Gynaecol Obstet, 2013, 123(2): 142-145. DOI: 10.1016/j.ijgo.2013.05.012.
[41]
NOUGARET S, REINHOLD C, ALSHARIF S S, et al. Endometrial cancer: combined MR volumetry and diffusion-weighted imaging for assessment of myometrial and lymphovascular invasion and tumor grade[J]. Radiology, 2015, 276(3): 797-808. DOI: 10.1148/radiol.15141212.
[42]
FU B Y, SHI B, CHEN Y L, et al. Combination analysis of ADC value with texture analysis based on T2WI and CE-T1WI for the preoperative prediction about grade, DMI, LVSI in endometrial carcinoma[J]. J Clin Radiol, 2022, 41(10): 1908-1915. DOI: 10.13437/j.cnki.jcr.2022.10.013.
[43]
OAKNIN A, BOSSE T J, CREUTZBERG C L, et al. Endometrial cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up[J]. Ann Oncol, 2022, 33(9): 860-877. DOI: 10.1016/j.annonc.2022.05.009.

PREV Diagnostic value of synthetic magnetic resonance imaging combined with amide proton transfer-weighted imaging in the grading of prostate cancer
NEXT Comparison of MRI radiomics models combined with clinical features for predicting treatment efficacy in adenomyosis after high intensity focused ultrasound using different machine learning algorithm
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn